Lucas M Ritschl, Carolina Classen, Paul Kilbertus, Julia Eufinger, Katharina Storck, Andreas M Fichter, Klaus-Dietrich Wolff, Florian D Grill
{"title":"Comparison of three-dimensional imaging of the nose using three different 3D-photography systems: an observational study.","authors":"Lucas M Ritschl, Carolina Classen, Paul Kilbertus, Julia Eufinger, Katharina Storck, Andreas M Fichter, Klaus-Dietrich Wolff, Florian D Grill","doi":"10.1186/s13005-024-00406-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>New 3D technologies for superficial soft tissue changes, especially in plastic and reconstructive surgical procedures, can improve the planning and documentation of facial surgeries. The purpose of this study was to compare and determine the applicability and feasibility of three different 3D-photography systems in clinical practice imaging the nose.</p><p><strong>Methods: </strong>A total of 16 healthy non-operated noses were included in this prospective study. A plaster model of each nose was produced, digitized, and converted to a .stl mesh (= ground truth model). Three-dimensional images of each nose were then taken using Artec Space Spider (gold standard), Planmeca ProFace®, and the Bellus3D Dental Pro application. All resulting .stl files were aligned to the ground truth model using MeshLab software, and the root mean square error (RMSE), mean surface distance (MSD), and Hausdorff distance (HD) were calculated.</p><p><strong>Results: </strong>The Artec Space Spider 3D-photography system showed significantly better results compared to the two other systems in regard to RMSE, MSD, and HD (each p < 0.001). There was no significant difference between Planmeca ProFace® and Bellus3D Dental Pro in terms of RMSE, MSD, and HD. Overall, all three camera systems showed a clinically acceptable deviation to the reference model (range: -1.23-1.57 mm).</p><p><strong>Conclusions: </strong>The three evaluated 3D-photography systems were suitable for nose imaging in the clinical routine. While Artec Space Spider showed the highest accuracy, the Bellus3D Dental Pro app may be the most feasible option for everyday clinical use due to its portability, ease of use, and low cost. This study presents three different systems, allowing readers to extrapolate to other systems when planning to introduce 3D photography in the clinical routine.</p>","PeriodicalId":12994,"journal":{"name":"Head & Face Medicine","volume":"20 1","pages":"7"},"PeriodicalIF":2.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807178/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Head & Face Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13005-024-00406-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: New 3D technologies for superficial soft tissue changes, especially in plastic and reconstructive surgical procedures, can improve the planning and documentation of facial surgeries. The purpose of this study was to compare and determine the applicability and feasibility of three different 3D-photography systems in clinical practice imaging the nose.
Methods: A total of 16 healthy non-operated noses were included in this prospective study. A plaster model of each nose was produced, digitized, and converted to a .stl mesh (= ground truth model). Three-dimensional images of each nose were then taken using Artec Space Spider (gold standard), Planmeca ProFace®, and the Bellus3D Dental Pro application. All resulting .stl files were aligned to the ground truth model using MeshLab software, and the root mean square error (RMSE), mean surface distance (MSD), and Hausdorff distance (HD) were calculated.
Results: The Artec Space Spider 3D-photography system showed significantly better results compared to the two other systems in regard to RMSE, MSD, and HD (each p < 0.001). There was no significant difference between Planmeca ProFace® and Bellus3D Dental Pro in terms of RMSE, MSD, and HD. Overall, all three camera systems showed a clinically acceptable deviation to the reference model (range: -1.23-1.57 mm).
Conclusions: The three evaluated 3D-photography systems were suitable for nose imaging in the clinical routine. While Artec Space Spider showed the highest accuracy, the Bellus3D Dental Pro app may be the most feasible option for everyday clinical use due to its portability, ease of use, and low cost. This study presents three different systems, allowing readers to extrapolate to other systems when planning to introduce 3D photography in the clinical routine.
期刊介绍:
Head & Face Medicine is a multidisciplinary open access journal that publishes basic and clinical research concerning all aspects of cranial, facial and oral conditions.
The journal covers all aspects of cranial, facial and oral diseases and their management. It has been designed as a multidisciplinary journal for clinicians and researchers involved in the diagnostic and therapeutic aspects of diseases which affect the human head and face. The journal is wide-ranging, covering the development, aetiology, epidemiology and therapy of head and face diseases to the basic science that underlies these diseases. Management of head and face diseases includes all aspects of surgical and non-surgical treatments including psychopharmacological therapies.