Telemetry-Based Haptic Rendering for Racing Game Experience Improvement

IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS IEEE Transactions on Haptics Pub Date : 2024-01-24 DOI:10.1109/TOH.2024.3357885
Jiwan Lee;Junwoo Kim;Jeonggoo Kang;Eunsoo Jo;Dong Chul Park;Seungmoon Choi
{"title":"Telemetry-Based Haptic Rendering for Racing Game Experience Improvement","authors":"Jiwan Lee;Junwoo Kim;Jeonggoo Kang;Eunsoo Jo;Dong Chul Park;Seungmoon Choi","doi":"10.1109/TOH.2024.3357885","DOIUrl":null,"url":null,"abstract":"Many recent games, such as racing and flight games, open their game telemetry data to users by storing them in the local memory. Such telemetry data can provide useful information for haptic rendering, and this advantage has been exploited by the industry. This approach applies to any applications that export telemetry data in run time. The haptic rendering module operates as a separate process that accesses the telemetry data in parallel with the application. It is simple, efficient, and modular while retaining the application intact. We examine the approach's viability for user experience improvement by developing three telemetry-based haptic rendering algorithms for car racing games. They express the car engine response, collisions with external objects, and the road surface texture, respectively. Building a haptics-enabled driving platform, we conducted a user study comparing gaming experiences between our telemetry-based algorithms and conventional sound-to-tactile conversion algorithms. The results showed that the telemetry-based effects elicited better experiences than the sound-based effects.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 1","pages":"72-79"},"PeriodicalIF":2.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10413623/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Many recent games, such as racing and flight games, open their game telemetry data to users by storing them in the local memory. Such telemetry data can provide useful information for haptic rendering, and this advantage has been exploited by the industry. This approach applies to any applications that export telemetry data in run time. The haptic rendering module operates as a separate process that accesses the telemetry data in parallel with the application. It is simple, efficient, and modular while retaining the application intact. We examine the approach's viability for user experience improvement by developing three telemetry-based haptic rendering algorithms for car racing games. They express the car engine response, collisions with external objects, and the road surface texture, respectively. Building a haptics-enabled driving platform, we conducted a user study comparing gaming experiences between our telemetry-based algorithms and conventional sound-to-tactile conversion algorithms. The results showed that the telemetry-based effects elicited better experiences than the sound-based effects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遥测的触觉渲染技术改善赛车游戏体验
最近的许多游戏,如赛车和飞行游戏,都将游戏遥测数据存储在本地内存中,向用户开放。这些遥测数据可为触觉渲染提供有用的信息,这一优势已被业界所利用。这种方法适用于任何在运行时输出遥测数据的应用程序。触觉渲染模块作为一个独立进程运行,与应用程序并行访问遥测数据。它简单、高效、模块化,同时保留了应用程序的完整性。通过为赛车游戏开发三种基于遥测的触觉渲染算法,我们检验了该方法在改善用户体验方面的可行性。它们分别表达了汽车引擎响应、与外部物体的碰撞以及路面纹理。我们建立了一个支持触觉的驾驶平台,并进行了一项用户研究,比较了基于遥测的算法和传统的声音-触觉转换算法的游戏体验。结果表明,基于遥测的效果比基于声音的效果能带来更好的体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Haptics
IEEE Transactions on Haptics COMPUTER SCIENCE, CYBERNETICS-
CiteScore
5.90
自引率
13.80%
发文量
109
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.
期刊最新文献
A Novel Ungrounded Haptic Device for Generation and Orientation of Force and Torque Feedbacks. HM-Array: A Novel Haptic Magnetism-based Leader-follower Platform for Minimally Invasive Robotic Surgery. Perceptual Constancy in the Speed Dependence of Friction During Active Tactile Exploration. A Generalized Tracking Wall Approach to the Haptic Simulation of Tip Forces During Needle Insertion. A Visuo-Haptic System for Nodule Detection Training: Insights from EEG and behavioral analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1