首页 > 最新文献

IEEE Transactions on Haptics最新文献

英文 中文
List of Reviewers 2024
IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-03-21 DOI: 10.1109/TOH.2025.3542256
{"title":"List of Reviewers 2024","authors":"","doi":"10.1109/TOH.2025.3542256","DOIUrl":"https://doi.org/10.1109/TOH.2025.3542256","url":null,"abstract":"","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"18 1","pages":"281-282"},"PeriodicalIF":2.4,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10937282","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Special Issue: Towards a Transdisciplinary Approach to the Development and Control of Haptic Devices for Human-in-the-Loop Applications
IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-03-21 DOI: 10.1109/TOH.2025.3546751
Lucia Seminara;Strahinja Dosen;Giovanni Berselli;Gerald E. Loeb;Salvatore Pirozzi;Roberta Klatzky;Silvano Zipoli Caiani;Mengjia Zhu
Building haptic interfaces for human-in-the-loop applications is a profound scientific and technological challenge. It requires developing methods to intuitively channel sensorimotor information between afferent and efferent neural pathways of a human user and inputs and outputs of an external system. In such applications, artificial touch may serve as a virtual extension of the human body to a remote location (e.g., teleoperation) or it can create a perception that an external system is a part of the body (e.g., prosthetics).
为 "人在回路 "应用构建触觉界面是一项艰巨的科学和技术挑战。它要求开发出在人类用户的传入和传出神经通路与外部系统的输入和输出之间直观地传递感觉运动信息的方法。在此类应用中,人工触觉可以作为人体向远程位置的虚拟延伸(如远程操作),也可以让人感觉到外部系统是人体的一部分(如假肢)。
{"title":"Editorial: Special Issue: Towards a Transdisciplinary Approach to the Development and Control of Haptic Devices for Human-in-the-Loop Applications","authors":"Lucia Seminara;Strahinja Dosen;Giovanni Berselli;Gerald E. Loeb;Salvatore Pirozzi;Roberta Klatzky;Silvano Zipoli Caiani;Mengjia Zhu","doi":"10.1109/TOH.2025.3546751","DOIUrl":"https://doi.org/10.1109/TOH.2025.3546751","url":null,"abstract":"Building haptic interfaces for human-in-the-loop applications is a profound scientific and technological challenge. It requires developing methods to intuitively channel sensorimotor information between afferent and efferent neural pathways of a human user and inputs and outputs of an external system. In such applications, artificial touch may serve as a virtual extension of the human body to a remote location (e.g., teleoperation) or it can create a perception that an external system is a part of the body (e.g., prosthetics).","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"18 1","pages":"3-5"},"PeriodicalIF":2.4,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10937296","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing Apparent Haptic Motion and Funneling for the Perception of Tactile Animation Illusions on a Circular Tactile Display.
IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-03-19 DOI: 10.1109/TOH.2025.3552992
Thomas Pietrzak, Rahul Kumar Ray

Tactile animation illusions are used to display dynamic information with haptic cues. In this study, we investigate two forms of tactile animation illusions that leverage the Funneling effect and Apparent Haptic Motion (AHM) on a one-dimensional circular tactile display. We define new parameters for the description of AHM that describe both the temporal and spatial aspects of these animations: Angle per Actuator (APA) and Revolution Duration (RD). We present three user studies about the perception of angular animations produced with these effects. Our results show that people can interpret AHM animations regardless of the APA value and that they can interpret tactile animation illusions slower than one degree per second. We also showed that the participants' ability to discriminate angular animations improves proportionally with the angle presented.

{"title":"Comparing Apparent Haptic Motion and Funneling for the Perception of Tactile Animation Illusions on a Circular Tactile Display.","authors":"Thomas Pietrzak, Rahul Kumar Ray","doi":"10.1109/TOH.2025.3552992","DOIUrl":"10.1109/TOH.2025.3552992","url":null,"abstract":"<p><p>Tactile animation illusions are used to display dynamic information with haptic cues. In this study, we investigate two forms of tactile animation illusions that leverage the Funneling effect and Apparent Haptic Motion (AHM) on a one-dimensional circular tactile display. We define new parameters for the description of AHM that describe both the temporal and spatial aspects of these animations: Angle per Actuator (APA) and Revolution Duration (RD). We present three user studies about the perception of angular animations produced with these effects. Our results show that people can interpret AHM animations regardless of the APA value and that they can interpret tactile animation illusions slower than one degree per second. We also showed that the participants' ability to discriminate angular animations improves proportionally with the angle presented.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143663576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tactile-Thermal Interactions: Cooperation and Competition.
IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-03-10 DOI: 10.1109/TOH.2025.3549677
Lynette A Jones, Hsin-Ni Ho

This review focuses on the interactions between the cutaneous senses, and in particular touch and temperature, as these are the most relevant for developing skin-based display technologies for use in virtual reality (VR) and for designing multimodal haptic devices. A broad spectrum of research is reviewed ranging from studies that have examined the mechanisms involved in thermal intensification and tactile masking, to more applied work that has focused on implementing thermal-tactile illusions such as thermal referral and illusory wetness in VR environments. Research on these tactile-thermal illusions has identified the differences between the senses of cold and warmth in terms of their effects on the perception of object properties and the prevalence of the perceptual experiences elicited. They have also underscored the fundamental spatial and temporal differences between the tactile and thermal senses. The wide-ranging body of research on compound sensations such as wetness and stickiness has highlighted the mechanisms involved in sensing moisture and provided a framework for measuring these sensations in a variety of contexts. Although the interactions between the two senses are complex, it is clear that the addition of thermal inputs to a tactile display enhances both user experience and enables novel sensory experiences.

{"title":"Tactile-Thermal Interactions: Cooperation and Competition.","authors":"Lynette A Jones, Hsin-Ni Ho","doi":"10.1109/TOH.2025.3549677","DOIUrl":"https://doi.org/10.1109/TOH.2025.3549677","url":null,"abstract":"<p><p>This review focuses on the interactions between the cutaneous senses, and in particular touch and temperature, as these are the most relevant for developing skin-based display technologies for use in virtual reality (VR) and for designing multimodal haptic devices. A broad spectrum of research is reviewed ranging from studies that have examined the mechanisms involved in thermal intensification and tactile masking, to more applied work that has focused on implementing thermal-tactile illusions such as thermal referral and illusory wetness in VR environments. Research on these tactile-thermal illusions has identified the differences between the senses of cold and warmth in terms of their effects on the perception of object properties and the prevalence of the perceptual experiences elicited. They have also underscored the fundamental spatial and temporal differences between the tactile and thermal senses. The wide-ranging body of research on compound sensations such as wetness and stickiness has highlighted the mechanisms involved in sensing moisture and provided a framework for measuring these sensations in a variety of contexts. Although the interactions between the two senses are complex, it is clear that the addition of thermal inputs to a tactile display enhances both user experience and enables novel sensory experiences.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143596871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The CHAT System: A Wearable Haptic System For Facilitating Tactile Communication.
IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-03-07 DOI: 10.1109/TOH.2025.3549036
Bryan A MacGavin, Jennifer L Tennison, Terra Edwards, Jenna L Gorlewicz

Despite the richness of the human tactile capacity, remote communication practices often lack touch-based interactions. This leads to overtaxing our visual and auditory channels, a lack of connection and engagement, and inaccessibility for diverse sensory groups. In this paper, we learn from haptic intuitions of the blind and low vision (BLV) and Protactile DeafBlind (PT-DB) communities to investigate how core functions of communication can be routed through tactile channels. We investigate this re-routing by designing the Conversational Haptic Technology (CHAT) system, a wearable haptic system to explore the feasibility of language recreation through core functions of communication and emotional expression via touch. We contribute the design evolution of an input (sensing) pad and an output (actuation) pad, which enable a bidirectional, wireless system to support remote, touch-based communication. These systems were iteratively evaluated through a series of user studies with sighted-hearing (N=20), BLV (N=4), and PT-DB (N=7) participants to uncover touch profiles for relaying specific communication functions and emotional responses. Results indicate trends and similarities in the touch-based cues organically employed across the diverse groups and provide an initial framework for demonstrating the feasibility of communicating core functions through touch in a wearable form factor.

{"title":"The CHAT System: A Wearable Haptic System For Facilitating Tactile Communication.","authors":"Bryan A MacGavin, Jennifer L Tennison, Terra Edwards, Jenna L Gorlewicz","doi":"10.1109/TOH.2025.3549036","DOIUrl":"https://doi.org/10.1109/TOH.2025.3549036","url":null,"abstract":"<p><p>Despite the richness of the human tactile capacity, remote communication practices often lack touch-based interactions. This leads to overtaxing our visual and auditory channels, a lack of connection and engagement, and inaccessibility for diverse sensory groups. In this paper, we learn from haptic intuitions of the blind and low vision (BLV) and Protactile DeafBlind (PT-DB) communities to investigate how core functions of communication can be routed through tactile channels. We investigate this re-routing by designing the Conversational Haptic Technology (CHAT) system, a wearable haptic system to explore the feasibility of language recreation through core functions of communication and emotional expression via touch. We contribute the design evolution of an input (sensing) pad and an output (actuation) pad, which enable a bidirectional, wireless system to support remote, touch-based communication. These systems were iteratively evaluated through a series of user studies with sighted-hearing (N=20), BLV (N=4), and PT-DB (N=7) participants to uncover touch profiles for relaying specific communication functions and emotional responses. Results indicate trends and similarities in the touch-based cues organically employed across the diverse groups and provide an initial framework for demonstrating the feasibility of communicating core functions through touch in a wearable form factor.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143575649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconfigurable Flexible Haptic Interface Using Localized Friction Modulation.
IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-03-07 DOI: 10.1109/TOH.2025.3548880
Romain Le Magueresse, Fabrice Casset, Frederic Giraud, Munique Kazar Mendes, Daniel Mermin, Remi Franiatte, Anis Kaci, Mikael Colin

Current flexible haptic technologies struggle to render textures as effectively as rigid surfaces with friction reduction due to poor propagation of elastic waves in flexible substrates. Alternative solutions using different actuators have been explored, but their low density hampers fine renderings, and so texture rendering. To overcome these limits, we propose in this paper the development, the characterization, and the evaluation of an innovative haptic solution enabling localized or continuous texture rendering on a flexible surface. On the basis of previous work, the developed surface is composed of several haptic resonators vibrating at an ultrasonic frequency, driven by piezoelectric actuators, and associated with a polymer matrix. The solution combines the advantages of a rigid haptic surface, implementing friction modulation to obtain texture stimulation, and the conformability of a 75 m thick polymer sheet. By powering or not the actuators, it is possible to display simple tactile shapes. Tribological measurements confirm that the friction reduction matches the desired shape. Two studies demonstrated the device's effectiveness: participants identified simple geometric shapes with a 96  success rate and 14 s detection time, and two users simultaneously recognized independent tactile patterns, achieving 89  accuracy. This flexible device supports simple geometric shape display with texture rendering, multi-touch and multi-user interaction, offering potential for various applications.

{"title":"Reconfigurable Flexible Haptic Interface Using Localized Friction Modulation.","authors":"Romain Le Magueresse, Fabrice Casset, Frederic Giraud, Munique Kazar Mendes, Daniel Mermin, Remi Franiatte, Anis Kaci, Mikael Colin","doi":"10.1109/TOH.2025.3548880","DOIUrl":"https://doi.org/10.1109/TOH.2025.3548880","url":null,"abstract":"<p><p>Current flexible haptic technologies struggle to render textures as effectively as rigid surfaces with friction reduction due to poor propagation of elastic waves in flexible substrates. Alternative solutions using different actuators have been explored, but their low density hampers fine renderings, and so texture rendering. To overcome these limits, we propose in this paper the development, the characterization, and the evaluation of an innovative haptic solution enabling localized or continuous texture rendering on a flexible surface. On the basis of previous work, the developed surface is composed of several haptic resonators vibrating at an ultrasonic frequency, driven by piezoelectric actuators, and associated with a polymer matrix. The solution combines the advantages of a rigid haptic surface, implementing friction modulation to obtain texture stimulation, and the conformability of a 75 m thick polymer sheet. By powering or not the actuators, it is possible to display simple tactile shapes. Tribological measurements confirm that the friction reduction matches the desired shape. Two studies demonstrated the device's effectiveness: participants identified simple geometric shapes with a 96  success rate and 14 s detection time, and two users simultaneously recognized independent tactile patterns, achieving 89  accuracy. This flexible device supports simple geometric shape display with texture rendering, multi-touch and multi-user interaction, offering potential for various applications.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143575646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Snail: A Wearable Actuated Prop to Simulate Grasp of Rigid and Soft Objects in Virtual Reality. 蜗牛在虚拟现实中模拟抓取软硬物体的可穿戴驱动道具。
IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-03-05 DOI: 10.1109/TOH.2025.3548478
Justine Saint-Aubert

The Snail is a wearable haptic interface that enables users to experience force feedback when grasping objects in Virtual Reality. It consists of a 3D-printed prop attached to the tip of the thumb that can rotate thanks to a small actuator. The prop is shaped like a snail to display different grasping sizes, ranging from to , according to its orientation. The prop displays the force feedback, so forces over can be displayed between fingers using small and low-power actuation. Very rigid objects can be rendered when the prop remains static, but rotations when the users grasp the prop also allow for the simulation of soft objects. The Snail is portable, low-cost, and easy to reproduce because it is made of 3D-printed parts. The design and performance of the device were evaluated through technical evaluations and 3 user experiments. They show that participants can discriminate different grasping sizes and levels of softness with the interface. The Snail also enhances user experience and performances in Virtual Reality compared to standard vibration feedback.

蜗牛 "是一种可穿戴的触觉界面,能让用户在虚拟现实中抓取物体时体验力反馈。它由一个 3D 打印的道具组成,该道具连接在拇指尖上,通过一个小型致动器可以旋转。该道具的形状像一只蜗牛,可根据方向显示不同的抓取大小,从到 ,不等。该道具可以显示力反馈,因此可以使用小巧、低功耗的致动器显示手指间的力。当道具保持静止时,可以呈现非常坚硬的物体,但当用户抓握道具时发生旋转,也可以模拟柔软的物体。蜗牛由三维打印部件制成,便于携带,成本低,易于复制。该装置的设计和性能通过技术评估和 3 个用户实验进行了评估。实验结果表明,参与者可以通过界面分辨不同的抓握尺寸和柔软度。与标准振动反馈相比,蜗牛还增强了虚拟现实中的用户体验和性能。
{"title":"The Snail: A Wearable Actuated Prop to Simulate Grasp of Rigid and Soft Objects in Virtual Reality.","authors":"Justine Saint-Aubert","doi":"10.1109/TOH.2025.3548478","DOIUrl":"https://doi.org/10.1109/TOH.2025.3548478","url":null,"abstract":"<p><p>The Snail is a wearable haptic interface that enables users to experience force feedback when grasping objects in Virtual Reality. It consists of a 3D-printed prop attached to the tip of the thumb that can rotate thanks to a small actuator. The prop is shaped like a snail to display different grasping sizes, ranging from to , according to its orientation. The prop displays the force feedback, so forces over can be displayed between fingers using small and low-power actuation. Very rigid objects can be rendered when the prop remains static, but rotations when the users grasp the prop also allow for the simulation of soft objects. The Snail is portable, low-cost, and easy to reproduce because it is made of 3D-printed parts. The design and performance of the device were evaluated through technical evaluations and 3 user experiments. They show that participants can discriminate different grasping sizes and levels of softness with the interface. The Snail also enhances user experience and performances in Virtual Reality compared to standard vibration feedback.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143566935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LARIAT: Predictive Haptic Feedback to Improve Semi-Autonomous UGV Safety in a Case Study.
IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-03-03 DOI: 10.1109/TOH.2025.3546979
Chandler Stubbs, Kathleen Steadman, David M Bevly, Chad G Rose

While much work is being done to advance autonomous capabilities of mobile robotics, specifically unmanned ground vehicles (UGVs), some applications might currently be too complex or undesirable for full autonomy. Maintaining a human in the loop has proven to be a reliable strategy in these applications, yet there are currently limitations to the efficacy of human operators. Haptic feedback has been proposed as a method of addressing these limitations, and aiding UGV operators in safe and effective operation. This manuscript presents the experimental validation of LARIAT (Lowering Attention Requirements in semi-Autonomous Teleoperation), a portable haptic device for teleoperated semi-autonomous UGVs. This device utilizes an adapted predictive form of the Zero-Moment Point (ZMP) rollover index to inform haptic squeeze cues provided to the UGV operator for human-on-the-loop notifications. First, a brief design overview of LARIAT, implemented haptic control, and the ZMP index are presented. In addition to experimental device characterization of the just noticeable difference, we present a case study that demonstrates LARIAT's abilities to improve teleoperation performance. In an experiment involving a simulation of walking behind a semi-autonomous UGV, LARIAT reduced the number of UGV rollovers by up to 50%, with comparable or increased performance in a concurrent secondary tasks.

{"title":"LARIAT: Predictive Haptic Feedback to Improve Semi-Autonomous UGV Safety in a Case Study.","authors":"Chandler Stubbs, Kathleen Steadman, David M Bevly, Chad G Rose","doi":"10.1109/TOH.2025.3546979","DOIUrl":"https://doi.org/10.1109/TOH.2025.3546979","url":null,"abstract":"<p><p>While much work is being done to advance autonomous capabilities of mobile robotics, specifically unmanned ground vehicles (UGVs), some applications might currently be too complex or undesirable for full autonomy. Maintaining a human in the loop has proven to be a reliable strategy in these applications, yet there are currently limitations to the efficacy of human operators. Haptic feedback has been proposed as a method of addressing these limitations, and aiding UGV operators in safe and effective operation. This manuscript presents the experimental validation of LARIAT (Lowering Attention Requirements in semi-Autonomous Teleoperation), a portable haptic device for teleoperated semi-autonomous UGVs. This device utilizes an adapted predictive form of the Zero-Moment Point (ZMP) rollover index to inform haptic squeeze cues provided to the UGV operator for human-on-the-loop notifications. First, a brief design overview of LARIAT, implemented haptic control, and the ZMP index are presented. In addition to experimental device characterization of the just noticeable difference, we present a case study that demonstrates LARIAT's abilities to improve teleoperation performance. In an experiment involving a simulation of walking behind a semi-autonomous UGV, LARIAT reduced the number of UGV rollovers by up to 50%, with comparable or increased performance in a concurrent secondary tasks.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Teleoperator Coupling Dynamics Impact Human Motor Control Across Pursuit Tracking Speeds
IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-02-27 DOI: 10.1109/TOH.2025.3546522
Jacob D. Carducci;Noah J. Cowan;Jeremy D. Brown
Robotic teleoperators introduce novel electromechanical dynamics between the user and the environment. While considerable effort has focused on minimizing these dynamics, we lack a robust understanding of their impact on user task performance across the range of human motor control ability. Here, we utilize a 1-DoF teleoperator testbed with interchangeable mechanical and electromechanical couplings between the leader and follower to investigate to what extent, if any, the dynamics of the teleoperator influence performance in a visual-motor pursuit tracking task. We recruited N = 30 participants to perform the task at frequencies ranging from 0.55–2.35 Hz, with the testbed configured into Mechanical, Unilateral, and Bilateral configurations. Results demonstrate that tracking performance at the follower was similar across configurations. However, participants' adjustment at the leader differed between Mechanical, Unilateral, and Bilateral configurations. In addition, participants applied different grip forces between the Mechanical and Unilateral configurations. Finally, participants' ability to compensate for coupling dynamics diminished significantly as execution speed increased. Overall, these findings support the argument that humans are capable of incorporating teleoperator dynamics into their motor control scheme and producing compensatory control strategies to account for these dynamics; however, this compensation is significantly affected by the leader-follower coupling dynamics and the speed of task execution.
{"title":"Teleoperator Coupling Dynamics Impact Human Motor Control Across Pursuit Tracking Speeds","authors":"Jacob D. Carducci;Noah J. Cowan;Jeremy D. Brown","doi":"10.1109/TOH.2025.3546522","DOIUrl":"10.1109/TOH.2025.3546522","url":null,"abstract":"Robotic teleoperators introduce novel electromechanical dynamics between the user and the environment. While considerable effort has focused on minimizing these dynamics, we lack a robust understanding of their impact on user task performance across the range of human motor control ability. Here, we utilize a 1-DoF teleoperator testbed with interchangeable mechanical and electromechanical couplings between the leader and follower to investigate to what extent, if any, the dynamics of the teleoperator influence performance in a visual-motor pursuit tracking task. We recruited N = 30 participants to perform the task at frequencies ranging from 0.55–2.35 Hz, with the testbed configured into Mechanical, Unilateral, and Bilateral configurations. Results demonstrate that tracking performance at the follower was similar across configurations. However, participants' adjustment at the leader differed between Mechanical, Unilateral, and Bilateral configurations. In addition, participants applied different grip forces between the Mechanical and Unilateral configurations. Finally, participants' ability to compensate for coupling dynamics diminished significantly as execution speed increased. Overall, these findings support the argument that humans are capable of incorporating teleoperator dynamics into their motor control scheme and producing compensatory control strategies to account for these dynamics; however, this compensation is significantly affected by the leader-follower coupling dynamics and the speed of task execution.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"18 1","pages":"20-31"},"PeriodicalIF":2.4,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of Airborne Ultrasound Focus on Skin Surface Using Thermal Imaging.
IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-02-26 DOI: 10.1109/TOH.2025.3546270
Ryoya Onishi, Sota Iwabuchi, Shun Suzuki, Takaaki Kamigaki, Yasutoshi Makino, Hiroyuki Shinoda

In recent years, tactile presentation technology using airborne ultrasound has attracted attention. To achieve an ideal tactile presentation using ultrasound, the acoustic field on the user's skin surface must be determined, particularly the location of the focal point. Previous studies have suggested that thermal images can be used to immediately visualize sound pressure patterns on finger surfaces. In this study, we comprehensively investigated the performance of thermal imaging for measuring the ultrasound focus on the skin. First, we confirmed that the sound pressure peak at the focus and the temperature change peak were matched using silicone that mimicked the skin. In addition, we confirmed that when human skin was irradiated, a temperature increase was observed at above 4.0 kPa in 9 out of 10 participants. Moreover, a 5.5 kPa focus could be employed to track the focal position if the moving velocity was less than 100 mm/s and to detect the orbit if the velocity was less than 2000 mm/s. These results clarify the situation in which the focus can be measured by using thermal images and provide guidelines for practical use.

{"title":"Measurement of Airborne Ultrasound Focus on Skin Surface Using Thermal Imaging.","authors":"Ryoya Onishi, Sota Iwabuchi, Shun Suzuki, Takaaki Kamigaki, Yasutoshi Makino, Hiroyuki Shinoda","doi":"10.1109/TOH.2025.3546270","DOIUrl":"https://doi.org/10.1109/TOH.2025.3546270","url":null,"abstract":"<p><p>In recent years, tactile presentation technology using airborne ultrasound has attracted attention. To achieve an ideal tactile presentation using ultrasound, the acoustic field on the user's skin surface must be determined, particularly the location of the focal point. Previous studies have suggested that thermal images can be used to immediately visualize sound pressure patterns on finger surfaces. In this study, we comprehensively investigated the performance of thermal imaging for measuring the ultrasound focus on the skin. First, we confirmed that the sound pressure peak at the focus and the temperature change peak were matched using silicone that mimicked the skin. In addition, we confirmed that when human skin was irradiated, a temperature increase was observed at above 4.0 kPa in 9 out of 10 participants. Moreover, a 5.5 kPa focus could be employed to track the focal position if the moving velocity was less than 100 mm/s and to detect the orbit if the velocity was less than 2000 mm/s. These results clarify the situation in which the focus can be measured by using thermal images and provide guidelines for practical use.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Haptics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1