{"title":"The impact of water storage capacity on plant dynamics in arid environments: A stoichiometric modeling approach","authors":"Cuihua Wang , Sanling Yuan , Hao Wang","doi":"10.1016/j.mbs.2024.109147","DOIUrl":null,"url":null,"abstract":"<div><p>Plants in arid environments have evolved many strategies to resist drought. Among them, the developed water storage tissue is an essential characteristic of xerophytes. To clarify the role of water storage capacity in plant performance, we originally formulate a stoichiometric model to describe the interaction between plants and water with explicit water storage. Via an ecological reproductive index, we explore the effects of precipitation and water storage capacity on plant dynamics. The model possesses saddle–node bifurcation and forward or backward bifurcation, and the latter may lead to the emergence of alternative stable states between a stable survival state and a stable extinction state. Numerical simulations illustrate the persistence and resilience of plants regulated by soil conditions, precipitation and water storage capacity. Our findings contribute to the botanical theory in the perspectives of environmental change and plant water storage traits.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424000075","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants in arid environments have evolved many strategies to resist drought. Among them, the developed water storage tissue is an essential characteristic of xerophytes. To clarify the role of water storage capacity in plant performance, we originally formulate a stoichiometric model to describe the interaction between plants and water with explicit water storage. Via an ecological reproductive index, we explore the effects of precipitation and water storage capacity on plant dynamics. The model possesses saddle–node bifurcation and forward or backward bifurcation, and the latter may lead to the emergence of alternative stable states between a stable survival state and a stable extinction state. Numerical simulations illustrate the persistence and resilience of plants regulated by soil conditions, precipitation and water storage capacity. Our findings contribute to the botanical theory in the perspectives of environmental change and plant water storage traits.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.