Nathalie Boissot, Veronique Chovelon, Vincent Rittener-Ruff, Nathalie Giovinazzo, Pascale Mistral, Michel Pitrat, Myriam Charpentier, Christelle Troadec, Abdelhafid Bendahmane, Catherine Dogimont
{"title":"A highly diversified NLR cluster in melon contains homologs that confer powdery mildew and aphid resistance.","authors":"Nathalie Boissot, Veronique Chovelon, Vincent Rittener-Ruff, Nathalie Giovinazzo, Pascale Mistral, Michel Pitrat, Myriam Charpentier, Christelle Troadec, Abdelhafid Bendahmane, Catherine Dogimont","doi":"10.1093/hr/uhad256","DOIUrl":null,"url":null,"abstract":"<p><p><i>Podosphaera xanthii</i> is the main causal agent of powdery mildew (PM) on Cucurbitaceae. In <i>Cucumis melo</i>, the <i>Pm</i>-<i>w</i> resistance gene, which confers resistance to <i>P</i>. <i>xanthii,</i> is located on chromosome 5 in a cluster of nucleotide-binding leucine-rich repeat receptors (NLRs). We used positional cloning and transgenesis, to isolate the <i>Pm-w<sup>WMR 29</sup></i> gene encoding a coiled-coil NLR (CC-NLR). <i>Pm-w<sup>WMR 29</sup></i> conferred high level of resistance to race 1 of PM and intermediate level of resistance to race 3 of PM. <i>Pm-w<sup>WMR 29</sup></i> turned out to be a homolog of the <i>Aphis gossypii</i> resistance gene <i>Vat-1<sup>PI 161375</sup></i>. We confirmed that <i>Pm-w<sup>WMR 29</sup></i> did not confer resistance to aphids, while <i>Vat-1<sup>PI 161375</sup></i> did not confer resistance to PM<i>.</i> We showed that both homologs were included in a highly diversified cluster of NLRs, the <i>Vat</i> cluster. Specific <i>Vat-1<sup>PI 161375</sup></i> and <i>Pm-w<sup>WMR 29</sup></i> markers were present in 10% to 13% of 678 accessions representative of wild and cultivated melon types worldwide. Phylogenic reconstruction of 34 protein homologs of Vat-1<sup>PI 161375</sup> and Pm-w<sup>WMR <i>29</i></sup> identified in 24 melon accessions revealed an ancestor with four R65aa-a specific motif in the LRR domain, evolved towards aphid and virus resistance, while an ancestor with five R65aa evolved towards PM resistance. The complexity of the cluster comprising the <i>Vat/Pm-w</i> genes and its diversity in melon suggest that <i>Vat</i> homologs may contribute to the recognition of a broad range of yet to be identified pests and pathogens.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 1","pages":"uhad256"},"PeriodicalIF":7.6000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807702/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"园艺研究(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.1093/hr/uhad256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Podosphaera xanthii is the main causal agent of powdery mildew (PM) on Cucurbitaceae. In Cucumis melo, the Pm-w resistance gene, which confers resistance to P. xanthii, is located on chromosome 5 in a cluster of nucleotide-binding leucine-rich repeat receptors (NLRs). We used positional cloning and transgenesis, to isolate the Pm-wWMR 29 gene encoding a coiled-coil NLR (CC-NLR). Pm-wWMR 29 conferred high level of resistance to race 1 of PM and intermediate level of resistance to race 3 of PM. Pm-wWMR 29 turned out to be a homolog of the Aphis gossypii resistance gene Vat-1PI 161375. We confirmed that Pm-wWMR 29 did not confer resistance to aphids, while Vat-1PI 161375 did not confer resistance to PM. We showed that both homologs were included in a highly diversified cluster of NLRs, the Vat cluster. Specific Vat-1PI 161375 and Pm-wWMR 29 markers were present in 10% to 13% of 678 accessions representative of wild and cultivated melon types worldwide. Phylogenic reconstruction of 34 protein homologs of Vat-1PI 161375 and Pm-wWMR 29 identified in 24 melon accessions revealed an ancestor with four R65aa-a specific motif in the LRR domain, evolved towards aphid and virus resistance, while an ancestor with five R65aa evolved towards PM resistance. The complexity of the cluster comprising the Vat/Pm-w genes and its diversity in melon suggest that Vat homologs may contribute to the recognition of a broad range of yet to be identified pests and pathogens.