首页 > 最新文献

园艺研究(英文)最新文献

英文 中文
Correction to: DgbZIP3 interacts with DgbZIP2 to increase the expression of DgPOD for cold stress tolerance in chrysanthemum.
IF 7.6 Q1 GENETICS & HEREDITY Pub Date : 2025-02-24 eCollection Date: 2025-02-01 DOI: 10.1093/hr/uhaf047

[This corrects the article DOI: 10.1093/hr/uhac105.].

{"title":"Correction to: DgbZIP3 interacts with DgbZIP2 to increase the expression of <i>DgPOD</i> for cold stress tolerance in chrysanthemum.","authors":"","doi":"10.1093/hr/uhaf047","DOIUrl":"https://doi.org/10.1093/hr/uhaf047","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/hr/uhac105.].</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 2","pages":"uhaf047"},"PeriodicalIF":7.6,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11848036/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143494855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The whole-genome dissection of root system architecture provides new insights for the genetic improvement of alfalfa (Medicago sativa L.). 根系结构的全基因组剖析为紫花苜蓿(Medicago sativa L.)的遗传改良提供了新的见解。
IF 7.6 Q1 GENETICS & HEREDITY Pub Date : 2025-01-11 eCollection Date: 2025-01-01 DOI: 10.1093/hr/uhae271
Xueqian Jiang, Xiangcui Zeng, Ming Xu, Mingna Li, Fan Zhang, Fei He, Tianhui Yang, Chuan Wang, Ting Gao, Ruicai Long, Qingchuan Yang, Junmei Kang

Appropriate root system architecture (RSA) can improve alfalfa yield, yet its genetic basis remains largely unexplored. This study evaluated six RSA traits in 171 alfalfa genotypes grown under controlled greenhouse conditions. We also analyzed five yield-related traits in normal and drought stress environments and found a significant correlation (0.50) between root dry weight (RDW) and alfalfa dry weight under normal conditions (N_DW). A genome-wide association study (GWAS) was performed using 1 303 374 single-nucleotide polymorphisms (SNPs) to explore the relationships between RSA traits. Sixty significant SNPs (-log 10 (P) ≥ 5) were identified, with genes within the 50 kb upstream and downstream ranges primarily enriched in GO terms related to root development, hormone synthesis, and signaling, as well as morphological development. Further analysis identified 19 high-confidence candidate genes, including AUXIN RESPONSE FACTORs (ARFs), LATERAL ORGAN BOUNDARIES-DOMAIN (LBD), and WUSCHEL-RELATED HOMEOBOX (WOX). We verified that the forage dry weight under both normal and drought conditions exhibited significant differences among materials with different numbers of favorable haplotypes. Alfalfa containing more favorable haplotypes exhibited higher forage yields, whereas favorable haplotypes were not subjected to human selection during alfalfa breeding. Genomic prediction (GP) utilized SNPs from GWAS and machine learning for each RSA trait, achieving prediction accuracies ranging from 0.70 for secondary root position (SRP) to 0.80 for root length (RL), indicating robust predictive capability across the assessed traits. These findings provide new insights into the genetic underpinnings of root development in alfalfa, potentially informing future breeding strategies aimed at improving yield.

适当的根系结构(RSA)可以提高苜蓿产量,但其遗传基础仍未得到充分的研究。本研究在温室控制条件下对171个苜蓿基因型的6个RSA性状进行了评价。对正常和干旱胁迫环境下苜蓿的5个产量相关性状进行了分析,发现正常条件下苜蓿的根干重(RDW)与根干重(N_DW)呈显著相关(0.50)。利用1 303 374个单核苷酸多态性(snp)进行全基因组关联研究(GWAS),探讨RSA性状之间的关系。共鉴定出60个显著snp (-log 10 (P)≥5),在上游和下游50 kb范围内的基因主要富集与根发育、激素合成、信号传导以及形态发育相关的氧化石墨烯。进一步分析确定了19个高置信度的候选基因,包括生长素反应因子(ARFs)、侧壁器官边界域(LBD)和wuschl相关HOMEOBOX (WOX)。结果表明,在正常和干旱条件下,不同有利单倍型数量的原料的干重存在显著差异。具有优势单倍型的紫花苜蓿具有较高的饲料产量,而优势单倍型在紫花苜蓿育种过程中不受人类选择的影响。基因组预测(GP)利用来自GWAS和机器学习的snp对每个RSA性状进行预测,实现了从次生根位置(SRP)的0.70到根长度(RL)的0.80的预测精度,表明在评估的性状中具有强大的预测能力。这些发现为苜蓿根系发育的遗传基础提供了新的见解,可能为未来旨在提高产量的育种策略提供信息。
{"title":"The whole-genome dissection of root system architecture provides new insights for the genetic improvement of alfalfa (<i>Medicago sativa</i> L.).","authors":"Xueqian Jiang, Xiangcui Zeng, Ming Xu, Mingna Li, Fan Zhang, Fei He, Tianhui Yang, Chuan Wang, Ting Gao, Ruicai Long, Qingchuan Yang, Junmei Kang","doi":"10.1093/hr/uhae271","DOIUrl":"10.1093/hr/uhae271","url":null,"abstract":"<p><p>Appropriate root system architecture (RSA) can improve alfalfa yield, yet its genetic basis remains largely unexplored. This study evaluated six RSA traits in 171 alfalfa genotypes grown under controlled greenhouse conditions. We also analyzed five yield-related traits in normal and drought stress environments and found a significant correlation (0.50) between root dry weight (RDW) and alfalfa dry weight under normal conditions (N_DW). A genome-wide association study (GWAS) was performed using 1 303 374 single-nucleotide polymorphisms (SNPs) to explore the relationships between RSA traits. Sixty significant SNPs (-log <sub><b>10</b></sub> (<i>P</i>) ≥ 5) were identified, with genes within the 50 kb upstream and downstream ranges primarily enriched in GO terms related to root development, hormone synthesis, and signaling, as well as morphological development. Further analysis identified 19 high-confidence candidate genes, including AUXIN RESPONSE FACTORs (ARFs), LATERAL ORGAN BOUNDARIES-DOMAIN (LBD), and WUSCHEL-RELATED HOMEOBOX (WOX). We verified that the forage dry weight under both normal and drought conditions exhibited significant differences among materials with different numbers of favorable haplotypes. Alfalfa containing more favorable haplotypes exhibited higher forage yields, whereas favorable haplotypes were not subjected to human selection during alfalfa breeding. Genomic prediction (GP) utilized SNPs from GWAS and machine learning for each RSA trait, achieving prediction accuracies ranging from 0.70 for secondary root position (SRP) to 0.80 for root length (RL), indicating robust predictive capability across the assessed traits. These findings provide new insights into the genetic underpinnings of root development in alfalfa, potentially informing future breeding strategies aimed at improving yield.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 1","pages":"uhae271"},"PeriodicalIF":7.6,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: introducing dedication reviews-broad reviews in plant and horticultural sciences.
IF 7.6 Q1 GENETICS & HEREDITY Pub Date : 2025-01-06 eCollection Date: 2025-01-01 DOI: 10.1093/hr/uhae358
Zong-Ming Max Cheng
{"title":"Editorial: introducing dedication reviews-broad reviews in plant and horticultural sciences.","authors":"Zong-Ming Max Cheng","doi":"10.1093/hr/uhae358","DOIUrl":"https://doi.org/10.1093/hr/uhae358","url":null,"abstract":"","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 1","pages":"uhae358"},"PeriodicalIF":7.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
plantGIR: a genomic database of plants. plantGIR:植物基因组数据库。
IF 7.6 Q1 GENETICS & HEREDITY Pub Date : 2024-12-05 eCollection Date: 2024-12-01 DOI: 10.1093/hr/uhae342
Zhuo Liu, Chenhao Zhang, Jinghua He, Chunjin Li, Yanhong Fu, Yongfeng Zhou, Rui Cao, Haibin Liu, Xiaoming Song
{"title":"plantGIR: a genomic database of plants.","authors":"Zhuo Liu, Chenhao Zhang, Jinghua He, Chunjin Li, Yanhong Fu, Yongfeng Zhou, Rui Cao, Haibin Liu, Xiaoming Song","doi":"10.1093/hr/uhae342","DOIUrl":"10.1093/hr/uhae342","url":null,"abstract":"","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 12","pages":"uhae342"},"PeriodicalIF":7.6,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142878714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tonoplast sugar transporters as key drivers of sugar accumulation, a case study in sugarcane.
IF 7.6 Q1 GENETICS & HEREDITY Pub Date : 2024-11-06 eCollection Date: 2025-02-01 DOI: 10.1093/hr/uhae312
Michael Tang, Jiang Wang, Baskaran Kannan, Niki Maria Koukoulidis, Yi-Hsuan Lin, Fredy Altpeter, Li-Qing Chen
{"title":"Tonoplast sugar transporters as key drivers of sugar accumulation, a case study in sugarcane.","authors":"Michael Tang, Jiang Wang, Baskaran Kannan, Niki Maria Koukoulidis, Yi-Hsuan Lin, Fredy Altpeter, Li-Qing Chen","doi":"10.1093/hr/uhae312","DOIUrl":"10.1093/hr/uhae312","url":null,"abstract":"","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 2","pages":"uhae312"},"PeriodicalIF":7.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ectopic biosynthesis of catechin of tea plant can be completed by co-expression of the three CsANS, CsLAR, and CsANR genes.
IF 7.6 Q1 GENETICS & HEREDITY Pub Date : 2024-10-30 eCollection Date: 2025-02-01 DOI: 10.1093/hr/uhae304
Ni Yang, Jing-Wen Li, Yuan-Jie Deng, Rui-Min Teng, Wei Luo, Gui-Nan Li, Zhi-Hang Hu, Hui Liu, Ai-Sheng Xiong, Jian Zhang, Quan-Hong Yao, Jing Zhuang
{"title":"Ectopic biosynthesis of catechin of tea plant can be completed by co-expression of the three <i>CsANS</i>, <i>CsLAR</i>, and <i>CsANR</i> genes.","authors":"Ni Yang, Jing-Wen Li, Yuan-Jie Deng, Rui-Min Teng, Wei Luo, Gui-Nan Li, Zhi-Hang Hu, Hui Liu, Ai-Sheng Xiong, Jian Zhang, Quan-Hong Yao, Jing Zhuang","doi":"10.1093/hr/uhae304","DOIUrl":"10.1093/hr/uhae304","url":null,"abstract":"","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 2","pages":"uhae304"},"PeriodicalIF":7.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822398/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GenoBaits Cassava35K: high-resolution multi-SNP arrays for genetic analysis and molecular breeding using targeted sequencing and liquid chip technology.
IF 7.6 Q1 GENETICS & HEREDITY Pub Date : 2024-10-24 eCollection Date: 2025-02-01 DOI: 10.1093/hr/uhae305
Chaochao Li, Xiaoxue Ye, Zhongxin Jin, Kaisen Huo, Jiangxiang Ma, Weiwei Tie, Zehong Ding, Yongfeng Zhou, Wei Hu
{"title":"GenoBaits Cassava35K: high-resolution multi-SNP arrays for genetic analysis and molecular breeding using targeted sequencing and liquid chip technology.","authors":"Chaochao Li, Xiaoxue Ye, Zhongxin Jin, Kaisen Huo, Jiangxiang Ma, Weiwei Tie, Zehong Ding, Yongfeng Zhou, Wei Hu","doi":"10.1093/hr/uhae305","DOIUrl":"10.1093/hr/uhae305","url":null,"abstract":"","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 2","pages":"uhae305"},"PeriodicalIF":7.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817887/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disruption of ClOSD1 leads to both somatic and gametic ploidy doubling in watermelon.
IF 7.6 Q1 GENETICS & HEREDITY Pub Date : 2024-10-15 eCollection Date: 2025-01-01 DOI: 10.1093/hr/uhae288
Wenyu Pang, Wenbing He, Jing Liang, Qiaran Wang, Shengcan Hou, Xiaodan Luo, Junhua Li, Jiafa Wang, Shujuan Tian, Li Yuan
{"title":"Disruption of <i>ClOSD1</i> leads to both somatic and gametic ploidy doubling in watermelon.","authors":"Wenyu Pang, Wenbing He, Jing Liang, Qiaran Wang, Shengcan Hou, Xiaodan Luo, Junhua Li, Jiafa Wang, Shujuan Tian, Li Yuan","doi":"10.1093/hr/uhae288","DOIUrl":"https://doi.org/10.1093/hr/uhae288","url":null,"abstract":"","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 1","pages":"uhae288"},"PeriodicalIF":7.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775614/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding the genetic basis of secretory tissues in plants. 破译植物分泌组织的遗传基础。
IF 7.6 Q1 GENETICS & HEREDITY Pub Date : 2024-09-16 eCollection Date: 2025-01-01 DOI: 10.1093/hr/uhae263
Yuepeng Han

Although plant secretory tissues play important roles in host defense against herbivores and pathogens and the attraction of insect pollinators, their genetic control remains elusive. Here, it is focused that current progress has been made in the genetic regulatory mechanisms underpinning secretory tissue development in land plants. C1HDZ transcription factors (TFs) are found to play crucial roles in the regulation of internal secretory tissues in liverworts and Citrus as well as external secretory tissues in peach. C1HDZ TFs regulate secretory tissue development via synergistic interaction with AP2/ERF and MYC TFs. Thus, a set of genes are speculated to be recruited convergently for the formation of secretory tissues in land plants.

尽管植物分泌组织在寄主抵御食草动物和病原体以及吸引昆虫传粉媒介中发挥着重要作用,但其遗传调控仍是一个谜。本文就陆地植物分泌组织发育的遗传调控机制的研究进展进行综述。研究发现,C1HDZ转录因子(TFs)在肝草和柑橘的内分泌组织以及桃的外分泌组织中起着至关重要的调节作用。C1HDZ tf通过与AP2/ERF和MYC tf的协同作用调节分泌组织的发育。因此,一组基因被推测为陆生植物分泌组织的形成聚合募集。
{"title":"Decoding the genetic basis of secretory tissues in plants.","authors":"Yuepeng Han","doi":"10.1093/hr/uhae263","DOIUrl":"10.1093/hr/uhae263","url":null,"abstract":"<p><p>Although plant secretory tissues play important roles in host defense against herbivores and pathogens and the attraction of insect pollinators, their genetic control remains elusive. Here, it is focused that current progress has been made in the genetic regulatory mechanisms underpinning secretory tissue development in land plants. C1HDZ transcription factors (TFs) are found to play crucial roles in the regulation of internal secretory tissues in liverworts and <i>Citrus</i> as well as external secretory tissues in peach. C1HDZ TFs regulate secretory tissue development via synergistic interaction with AP2/ERF and MYC TFs. Thus, a set of genes are speculated to be recruited convergently for the formation of secretory tissues in land plants.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 1","pages":"uhae263"},"PeriodicalIF":7.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting the role of light signaling in plant responses to salt stress. 重新审视光信号在植物对盐胁迫反应中的作用。
IF 7.6 Q1 GENETICS & HEREDITY Pub Date : 2024-09-16 eCollection Date: 2025-01-01 DOI: 10.1093/hr/uhae262
Yinxia Peng, Haiyan Zhu, Yiting Wang, Jin Kang, Lixia Hu, Ling Li, Kangyou Zhu, Jiarong Yan, Xin Bu, Xiujie Wang, Ying Zhang, Xin Sun, Golam Jalal Ahammed, Chao Jiang, Sida Meng, Yufeng Liu, Zhouping Sun, Mingfang Qi, Tianlai Li, Feng Wang

As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress. These strategies include altering root development direction, shortening the life cycle, accelerating dormancy, closing stomata to reduce transpiration, and decreasing biomass. Apart from being a prime energy source, light is an environmental signal that profoundly influences plant growth and development and also participates in plants' response to salt stress. This review summarizes the regulatory network of salt tolerance by light signals in plants, which is vital to further understanding plants' adaptation to high salinity. In addition, the review highlights potential future uses of genetic engineering and light supplement technology by light-emitting diode (LED) to improve crop growth in saline-alkali environments in order to make full use of the vast saline land.

作为严重的环境危害之一,土壤盐碱化严重限制了作物的生产力、生长和发育。当植物受到盐胁迫时,它们会遭受一连串的损害,主要由渗透胁迫、离子毒性以及随后的氧化胁迫引起。作为无柄生物,植物已经开发出许多生理和生化策略来减轻盐胁迫的影响。这些策略包括改变根系发育方向、缩短生命周期、加速休眠、关闭气孔以减少蒸腾作用以及减少生物量。光除了是一种主要的能量来源外,还是一种环境信号,对植物的生长和发育有深远影响,也参与植物对盐胁迫的响应。本综述总结了植物中光信号对耐盐性的调控网络,这对进一步了解植物对高盐度的适应性至关重要。此外,综述还强调了基因工程和发光二极管(LED)光补充技术在未来的潜在用途,以改善作物在盐碱环境中的生长,从而充分利用广袤的盐碱地。
{"title":"Revisiting the role of light signaling in plant responses to salt stress.","authors":"Yinxia Peng, Haiyan Zhu, Yiting Wang, Jin Kang, Lixia Hu, Ling Li, Kangyou Zhu, Jiarong Yan, Xin Bu, Xiujie Wang, Ying Zhang, Xin Sun, Golam Jalal Ahammed, Chao Jiang, Sida Meng, Yufeng Liu, Zhouping Sun, Mingfang Qi, Tianlai Li, Feng Wang","doi":"10.1093/hr/uhae262","DOIUrl":"10.1093/hr/uhae262","url":null,"abstract":"<p><p>As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress. These strategies include altering root development direction, shortening the life cycle, accelerating dormancy, closing stomata to reduce transpiration, and decreasing biomass. Apart from being a prime energy source, light is an environmental signal that profoundly influences plant growth and development and also participates in plants' response to salt stress. This review summarizes the regulatory network of salt tolerance by light signals in plants, which is vital to further understanding plants' adaptation to high salinity. In addition, the review highlights potential future uses of genetic engineering and light supplement technology by light-emitting diode (LED) to improve crop growth in saline-alkali environments in order to make full use of the vast saline land.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 1","pages":"uhae262"},"PeriodicalIF":7.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
园艺研究(英文)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1