{"title":"Adsorption performance of bentonite and clay for Zn(II) in landfill leachate","authors":"Wen-Jing Sun, Qian-Tong Tang, Tian-Hao Lu, Ri-Dong Fan, Gao-Ge Sun, Yun-zhi Tan","doi":"10.1186/s40677-023-00265-2","DOIUrl":null,"url":null,"abstract":"The increasing prevalence of the Galvanized and dry battery industries has led to a rise in zinc proportions in landfills, posing environmental risks. This study explores the potential of bentonite, renowned for its metal adsorption capability, as a landfill barrier material. Adsorption characteristics of Zn(II) in natural bentonite and Shanghai clay were investigated. Various factors affecting Zn(II) adsorption, including pH, Na ion strength, contact time, initial Zn(II) concentration, and adsorption temperature, were analyzed through batch-type adsorption tests. The change in pH and Na strength demonstrates no significant impact on the adsorption of Zn(II) onto bentonite, highlighting the strong selectivity of bentonite for Zn(II). Conversely, the equilibrium adsorption capacity of Zn(II) onto clay increases with rising pH or decreasing ion strength. The Zn(II) adsorption onto bentonite is well-described by the pseudo-second-order, intra-particle diffusion, and Elovih models, each achieving an R2 value exceeding 0.9. While both physical and chemical adsorption coexist in Zn(II) adsorption onto bentonite or clay, the primary determinant of the adsorption rate is chemical adsorption. The adsorption onto bentonite is spontaneous, whereas onto clay it is not. The mechanism involves van der Waals forces, ion exchange, and chemical actions such as inner-sphere complexation for Zn(II) adsorption onto both bentonite and clay.","PeriodicalId":37025,"journal":{"name":"Geoenvironmental Disasters","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenvironmental Disasters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40677-023-00265-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing prevalence of the Galvanized and dry battery industries has led to a rise in zinc proportions in landfills, posing environmental risks. This study explores the potential of bentonite, renowned for its metal adsorption capability, as a landfill barrier material. Adsorption characteristics of Zn(II) in natural bentonite and Shanghai clay were investigated. Various factors affecting Zn(II) adsorption, including pH, Na ion strength, contact time, initial Zn(II) concentration, and adsorption temperature, were analyzed through batch-type adsorption tests. The change in pH and Na strength demonstrates no significant impact on the adsorption of Zn(II) onto bentonite, highlighting the strong selectivity of bentonite for Zn(II). Conversely, the equilibrium adsorption capacity of Zn(II) onto clay increases with rising pH or decreasing ion strength. The Zn(II) adsorption onto bentonite is well-described by the pseudo-second-order, intra-particle diffusion, and Elovih models, each achieving an R2 value exceeding 0.9. While both physical and chemical adsorption coexist in Zn(II) adsorption onto bentonite or clay, the primary determinant of the adsorption rate is chemical adsorption. The adsorption onto bentonite is spontaneous, whereas onto clay it is not. The mechanism involves van der Waals forces, ion exchange, and chemical actions such as inner-sphere complexation for Zn(II) adsorption onto both bentonite and clay.
期刊介绍:
Geoenvironmental Disasters is an international journal with a focus on multi-disciplinary applied and fundamental research and the effects and impacts on infrastructure, society and the environment of geoenvironmental disasters triggered by various types of geo-hazards (e.g. earthquakes, volcanic activity, landslides, tsunamis, intensive erosion and hydro-meteorological events).
The integrated study of Geoenvironmental Disasters is an emerging and composite field of research interfacing with areas traditionally within civil engineering, earth sciences, atmospheric sciences and the life sciences. It centers on the interactions within and between the Earth''s ground, air and water environments, all of which are affected by climate, geological, morphological and anthropological processes; and biological and ecological cycles. Disasters are dynamic forces which can change the Earth pervasively, rapidly, or abruptly, and which can generate lasting effects on the natural and built environments.
The journal publishes research papers, case studies and quick reports of recent geoenvironmental disasters, review papers and technical reports of various geoenvironmental disaster-related case studies. The focus on case studies and quick reports of recent geoenvironmental disasters helps to advance the practical understanding of geoenvironmental disasters and to inform future research priorities; they are a major component of the journal. The journal aims for the rapid publication of research papers at a high scientific level. The journal welcomes proposals for special issues reflecting the trends in geoenvironmental disaster reduction and monothematic issues. Researchers and practitioners are encouraged to submit original, unpublished contributions.