{"title":"Hilbert space-valued fractionally integrated autoregressive moving average processes with long memory operators","authors":"Amaury Durand , François Roueff","doi":"10.1016/j.jspi.2024.106146","DOIUrl":null,"url":null,"abstract":"<div><p><span>Fractionally integrated autoregressive moving average (FIARMA) processes have been widely and successfully used to model and predict univariate time series exhibiting long range dependence. Vector and functional extensions of these processes have also been considered more recently. Here we study these processes by relying on a spectral domain approach in the case where the processes are valued in a separable Hilbert space </span><span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. In this framework, the usual univariate long memory parameter <span><math><mi>d</mi></math></span> is replaced by a long memory <em>operator</em> <span><math><mi>D</mi></math></span> acting on <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, leading to a class of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-valued FIARMA(<span><math><mrow><mi>D</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi></mrow></math></span>) processes, where <span><math><mi>p</mi></math></span> and <span><math><mi>q</mi></math></span> are the degrees of the AR and MA polynomials. When <span><math><mi>D</mi></math></span> is a normal operator, we provide a necessary and sufficient condition for the <span><math><mi>D</mi></math></span>-fractional integration of an <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-valued ARMA(<span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></math></span><span>) process to be well defined. Then, we derive the best predictor for a class of causal FIARMA processes and study how this best predictor can be consistently estimated from a finite sample of the process. To this end, we provide a general result on quadratic functionals of the periodogram, which incidentally yields a result of independent interest. Namely, for any ergodic stationary process valued in </span><span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> with a finite second moment, the empirical autocovariance operator converges, in trace-norm, to the true autocovariance operator almost surely at each lag.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037837582400003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fractionally integrated autoregressive moving average (FIARMA) processes have been widely and successfully used to model and predict univariate time series exhibiting long range dependence. Vector and functional extensions of these processes have also been considered more recently. Here we study these processes by relying on a spectral domain approach in the case where the processes are valued in a separable Hilbert space . In this framework, the usual univariate long memory parameter is replaced by a long memory operator acting on , leading to a class of -valued FIARMA() processes, where and are the degrees of the AR and MA polynomials. When is a normal operator, we provide a necessary and sufficient condition for the -fractional integration of an -valued ARMA() process to be well defined. Then, we derive the best predictor for a class of causal FIARMA processes and study how this best predictor can be consistently estimated from a finite sample of the process. To this end, we provide a general result on quadratic functionals of the periodogram, which incidentally yields a result of independent interest. Namely, for any ergodic stationary process valued in with a finite second moment, the empirical autocovariance operator converges, in trace-norm, to the true autocovariance operator almost surely at each lag.
分数积分自回归移动平均(FIARMA)过程已被广泛成功地用于模拟和预测表现出长距离依赖性的单变量时间序列。最近,人们还考虑了这些过程的向量和函数扩展。在此,我们采用谱域方法来研究这些过程,即过程在可分离的希尔伯特空间 H0 中取值。在这个框架中,通常的单变量长记忆参数 d 被作用于 H0 的长记忆算子 D 所取代,从而产生了一类 H0 值的 FIARMA(D,p,q) 过程,其中 p 和 q 是 AR 和 MA 多项式的度数。当 D 是一个正态算子时,我们提供了一个必要条件和充分条件,使 H0 值 ARMA(p,q) 过程的 D 分积分定义明确。然后,我们推导出一类因果 FIARMA 过程的最佳预测因子,并研究如何从该过程的有限样本中持续估计该最佳预测因子。为此,我们提供了一个关于周期图二次函数的一般结果,并顺便得到了一个具有独立意义的结果。也就是说,对于任何以 H0 为值、具有有限第二矩的遍历静止过程,经验自方差算子在每个滞后期几乎肯定地收敛于真实自方差算子的迹正值。