High-performance diffusion model for inverse design of high Tc superconductors with effective doping and accurate stoichiometry

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Infomat Pub Date : 2024-01-22 DOI:10.1002/inf2.12519
Chengquan Zhong, Jingzi Zhang, Yuelin Wang, Yanwu Long, Pengzhou Zhu, Jiakai Liu, Kailong Hu, Junjie Chen, Xi Lin
{"title":"High-performance diffusion model for inverse design of high Tc superconductors with effective doping and accurate stoichiometry","authors":"Chengquan Zhong,&nbsp;Jingzi Zhang,&nbsp;Yuelin Wang,&nbsp;Yanwu Long,&nbsp;Pengzhou Zhu,&nbsp;Jiakai Liu,&nbsp;Kailong Hu,&nbsp;Junjie Chen,&nbsp;Xi Lin","doi":"10.1002/inf2.12519","DOIUrl":null,"url":null,"abstract":"<p>The pursuit of designing superconductors with high <i>T</i><sub>c</sub> has been a long-standing endeavor. However, the widespread incorporation of doping in high <i>T</i><sub>c</sub> superconductors significantly impacts electronic structure, intricately influencing <i>T</i><sub>c</sub>. The complex interplay between the structural composition and material performance presents a formidable challenge in superconductor design. Based on a novel generative model, diffusion model, and doping adaptive representation: three-channel matrix, we have designed a high <i>T</i><sub>c</sub> superconductors inverse design model called Supercon-Diffusion. It has achieved remarkable success in accurately generating chemical formulas for doped high <i>T</i><sub>c</sub> superconductors. Supercon-Diffusion is capable of generating superconductors that exhibit high <i>T</i><sub>c</sub> and excels at identifying the optimal doping ratios that yield the peak <i>T</i><sub>c</sub>. The doping effectiveness (55%) and electrical neutrality (55%) of the generated doped superconductors exceed those of traditional GAN models by more than tenfold. Density of state calculations on the structures further confirm the validity of the generated superconductors. Additionally, we have proposed 200 potential high <i>T</i><sub>c</sub> superconductors that have not been documented yet. This groundbreaking contribution effectively reduces the search space for high <i>T</i><sub>c</sub> superconductors. Moreover, it successfully establishes a bridge between the interrelated aspects of composition, structure, and property in superconductors, providing a novel solution for designing other doped materials.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 5","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12519","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12519","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The pursuit of designing superconductors with high Tc has been a long-standing endeavor. However, the widespread incorporation of doping in high Tc superconductors significantly impacts electronic structure, intricately influencing Tc. The complex interplay between the structural composition and material performance presents a formidable challenge in superconductor design. Based on a novel generative model, diffusion model, and doping adaptive representation: three-channel matrix, we have designed a high Tc superconductors inverse design model called Supercon-Diffusion. It has achieved remarkable success in accurately generating chemical formulas for doped high Tc superconductors. Supercon-Diffusion is capable of generating superconductors that exhibit high Tc and excels at identifying the optimal doping ratios that yield the peak Tc. The doping effectiveness (55%) and electrical neutrality (55%) of the generated doped superconductors exceed those of traditional GAN models by more than tenfold. Density of state calculations on the structures further confirm the validity of the generated superconductors. Additionally, we have proposed 200 potential high Tc superconductors that have not been documented yet. This groundbreaking contribution effectively reduces the search space for high Tc superconductors. Moreover, it successfully establishes a bridge between the interrelated aspects of composition, structure, and property in superconductors, providing a novel solution for designing other doped materials.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于反向设计具有有效掺杂和精确化学计量的高 Tc 超导材料的高性能扩散模型
设计具有高 Tc 的超导体是一项长期的工作。然而,在高 Tc 超导材料中广泛掺入掺杂剂会对电子结构产生重大影响,从而错综复杂地影响 Tc。结构组成与材料性能之间复杂的相互作用给超导体设计带来了严峻的挑战。基于新颖的生成模型、扩散模型和掺杂自适应表示:三通道矩阵,我们设计了一种名为 Supercon-Diffusion 的高 Tc 超导反向设计模型。该模型在精确生成掺杂高锝超导体的化学公式方面取得了巨大成功。Supercon-Diffusion 能够生成表现出高 Tc 的超导体,并擅长确定产生峰值 Tc 的最佳掺杂比。生成的掺杂超导体的掺杂有效性(55%)和电中性(55%)超过传统 GAN 模型的 10 倍以上。对这些结构进行的状态密度计算进一步证实了所生成超导体的有效性。此外,我们还提出了 200 种尚未记录在案的潜在高 Tc 超导物。这一突破性贡献有效地缩小了高锝超导体的搜索空间。此外,它还成功地在超导体的组成、结构和性质等相互关联的方面之间架起了一座桥梁,为设计其他掺杂材料提供了新颖的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
期刊最新文献
Cover Image Issue Information Back cover image Cover Image Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1