{"title":"Design and optimization of Bloch surface wave sensor with high sensitivity and quality factor using LiNbO3","authors":"Yuanshi Wei, Jiakang Shi, Zhen Liu, Daohan Ge, Liqiang Zhang","doi":"10.1117/1.jnp.18.016001","DOIUrl":null,"url":null,"abstract":"This work presents a refractive index sensor based on Bloch surface waves (BSW) with high sensitivity and quality factor (Q). The sensor utilizes a one-dimensional photonic crystal TiO2/MgF2 as a distributed Bragg reflector and employs a LiNbO3 thin film as the top defect layer to excite BSW through a Kretschmann prism. Numerical simulations using the rigorous coupled wave analysis method are conducted to explore various prism configurations, revealing that low refractive index prisms yield superior performance for BSW sensors. The designed sensor achieves a sensitivity of 1600 nm/RIU (or 938 °/RIU) and is analyzed for its full-width at half-maximum and quality factor (Q), with the sensor’s Q value reaching 8000 /RIU (or 13595 /RIU). Through manufacturing error analysis, it was found that the designed sensor has good mechanical robustness, is easy to manufacture, and is also easy to integrate. The results show that the LiNbO3 nonlinear tunable material has great application prospects in the field of refractive index sensors.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.jnp.18.016001","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a refractive index sensor based on Bloch surface waves (BSW) with high sensitivity and quality factor (Q). The sensor utilizes a one-dimensional photonic crystal TiO2/MgF2 as a distributed Bragg reflector and employs a LiNbO3 thin film as the top defect layer to excite BSW through a Kretschmann prism. Numerical simulations using the rigorous coupled wave analysis method are conducted to explore various prism configurations, revealing that low refractive index prisms yield superior performance for BSW sensors. The designed sensor achieves a sensitivity of 1600 nm/RIU (or 938 °/RIU) and is analyzed for its full-width at half-maximum and quality factor (Q), with the sensor’s Q value reaching 8000 /RIU (or 13595 /RIU). Through manufacturing error analysis, it was found that the designed sensor has good mechanical robustness, is easy to manufacture, and is also easy to integrate. The results show that the LiNbO3 nonlinear tunable material has great application prospects in the field of refractive index sensors.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.