Alternative extension of the Hager–Zhang conjugate gradient method for vector optimization

IF 2 2区 数学 Q2 MATHEMATICS, APPLIED Computational Optimization and Applications Pub Date : 2024-01-24 DOI:10.1007/s10589-023-00548-2
Qingjie Hu, Liping Zhu, Yu Chen
{"title":"Alternative extension of the Hager–Zhang conjugate gradient method for vector optimization","authors":"Qingjie Hu, Liping Zhu, Yu Chen","doi":"10.1007/s10589-023-00548-2","DOIUrl":null,"url":null,"abstract":"<p>Recently, Gonçalves and Prudente proposed an extension of the Hager–Zhang nonlinear conjugate gradient method for vector optimization (Comput Optim Appl 76:889–916, 2020). They initially demonstrated that directly extending the Hager–Zhang method for vector optimization may not result in descent in the vector sense, even when employing an exact line search. By utilizing a sufficiently accurate line search, they subsequently introduced a self-adjusting Hager–Zhang conjugate gradient method in the vector sense. The global convergence of this new scheme was proven without requiring regular restarts or any convex assumptions. In this paper, we propose an alternative extension of the Hager–Zhang nonlinear conjugate gradient method for vector optimization that preserves its desirable scalar property, i.e., ensuring sufficiently descent without relying on any line search or convexity assumption. Furthermore, we investigate its global convergence with the Wolfe line search under mild assumptions. Finally, numerical experiments are presented to illustrate the practical behavior of our proposed method.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"11 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-023-00548-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, Gonçalves and Prudente proposed an extension of the Hager–Zhang nonlinear conjugate gradient method for vector optimization (Comput Optim Appl 76:889–916, 2020). They initially demonstrated that directly extending the Hager–Zhang method for vector optimization may not result in descent in the vector sense, even when employing an exact line search. By utilizing a sufficiently accurate line search, they subsequently introduced a self-adjusting Hager–Zhang conjugate gradient method in the vector sense. The global convergence of this new scheme was proven without requiring regular restarts or any convex assumptions. In this paper, we propose an alternative extension of the Hager–Zhang nonlinear conjugate gradient method for vector optimization that preserves its desirable scalar property, i.e., ensuring sufficiently descent without relying on any line search or convexity assumption. Furthermore, we investigate its global convergence with the Wolfe line search under mild assumptions. Finally, numerical experiments are presented to illustrate the practical behavior of our proposed method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于矢量优化的哈格-张共轭梯度法的替代扩展
最近,Gonçalves 和 Prudente 提出了针对矢量优化的 Hager-Zhang 非线性共轭梯度法的扩展方法(Comput Optim Appl 76:889-916, 2020)。他们初步证明,直接将 Hager-Zhang 方法扩展用于矢量优化,即使采用精确的线性搜索,也可能无法实现矢量意义上的下降。通过使用足够精确的直线搜索,他们随后引入了矢量意义上的自调整哈格-张共轭梯度法。这一新方案的全局收敛性已得到证明,无需定期重启或任何凸假设。在本文中,我们提出了哈格-张非线性共轭梯度法在矢量优化方面的另一种扩展,它保留了其理想的标量特性,即无需依赖任何线性搜索或凸性假设即可确保充分下降。此外,我们还研究了在温和的假设条件下,该方法与沃尔夫线性搜索的全局收敛性。最后,我们通过数值实验来说明我们提出的方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
9.10%
发文量
91
审稿时长
10 months
期刊介绍: Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome. Topics of interest include, but are not limited to the following: Large Scale Optimization, Unconstrained Optimization, Linear Programming, Quadratic Programming Complementarity Problems, and Variational Inequalities, Constrained Optimization, Nondifferentiable Optimization, Integer Programming, Combinatorial Optimization, Stochastic Optimization, Multiobjective Optimization, Network Optimization, Complexity Theory, Approximations and Error Analysis, Parametric Programming and Sensitivity Analysis, Parallel Computing, Distributed Computing, and Vector Processing, Software, Benchmarks, Numerical Experimentation and Comparisons, Modelling Languages and Systems for Optimization, Automatic Differentiation, Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research, Transportation, Economics, Communications, Manufacturing, and Management Science.
期刊最新文献
Distributed inexact Newton method with adaptive step sizes. Off-the-grid regularisation for Poisson inverse problems. A family of conjugate gradient methods with guaranteed positiveness and descent for vector optimization Convergence of a quasi-Newton method for solving systems of nonlinear underdetermined equations Scaled-PAKKT sequential optimality condition for multiobjective problems and its application to an Augmented Lagrangian method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1