{"title":"Re-framing bio-plausible collision detection: identifying shared meta-properties through strategic prototyping","authors":"Haotian Wu, Shigang Yue, Cheng Hu","doi":"10.3389/fnbot.2024.1349498","DOIUrl":null,"url":null,"abstract":"<p>Insects exhibit remarkable abilities in navigating complex natural environments, whether it be evading predators, capturing prey, or seeking out con-specifics, all of which rely on their compact yet reliable neural systems. We explore the field of bio-inspired robotic vision systems, focusing on the locust inspired Lobula Giant Movement Detector (LGMD) models. The existing LGMD models are thoroughly evaluated, identifying their common meta-properties that are essential for their functionality. This article reveals a common framework, characterized by layered structures and computational strategies, which is crucial for enhancing the capability of bio-inspired models for diverse applications. The result of this analysis is the Strategic Prototype, which embodies the identified meta-properties. It represents a modular and more flexible method for developing more responsive and adaptable robotic visual systems. The perspective highlights the potential of the Strategic Prototype: LGMD-Universally Prototype (LGMD-UP), the key to re-framing LGMD models and advancing our understanding and implementation of bio-inspired visual systems in robotics. It might open up more flexible and adaptable avenues for research and practical applications.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"330 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1349498","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Insects exhibit remarkable abilities in navigating complex natural environments, whether it be evading predators, capturing prey, or seeking out con-specifics, all of which rely on their compact yet reliable neural systems. We explore the field of bio-inspired robotic vision systems, focusing on the locust inspired Lobula Giant Movement Detector (LGMD) models. The existing LGMD models are thoroughly evaluated, identifying their common meta-properties that are essential for their functionality. This article reveals a common framework, characterized by layered structures and computational strategies, which is crucial for enhancing the capability of bio-inspired models for diverse applications. The result of this analysis is the Strategic Prototype, which embodies the identified meta-properties. It represents a modular and more flexible method for developing more responsive and adaptable robotic visual systems. The perspective highlights the potential of the Strategic Prototype: LGMD-Universally Prototype (LGMD-UP), the key to re-framing LGMD models and advancing our understanding and implementation of bio-inspired visual systems in robotics. It might open up more flexible and adaptable avenues for research and practical applications.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.