Generalization and Informativeness of Conformal Prediction

Matteo Zecchin, Sangwoo Park, Osvaldo Simeone, Fredrik Hellström
{"title":"Generalization and Informativeness of Conformal Prediction","authors":"Matteo Zecchin, Sangwoo Park, Osvaldo Simeone, Fredrik Hellström","doi":"arxiv-2401.11810","DOIUrl":null,"url":null,"abstract":"The safe integration of machine learning modules in decision-making processes\nhinges on their ability to quantify uncertainty. A popular technique to achieve\nthis goal is conformal prediction (CP), which transforms an arbitrary base\npredictor into a set predictor with coverage guarantees. While CP certifies the\npredicted set to contain the target quantity with a user-defined tolerance, it\ndoes not provide control over the average size of the predicted sets, i.e.,\nover the informativeness of the prediction. In this work, a theoretical\nconnection is established between the generalization properties of the base\npredictor and the informativeness of the resulting CP prediction sets. To this\nend, an upper bound is derived on the expected size of the CP set predictor\nthat builds on generalization error bounds for the base predictor. The derived\nupper bound provides insights into the dependence of the average size of the CP\nset predictor on the amount of calibration data, the target reliability, and\nthe generalization performance of the base predictor. The theoretical insights\nare validated using simple numerical regression and classification tasks.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"146 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.11810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The safe integration of machine learning modules in decision-making processes hinges on their ability to quantify uncertainty. A popular technique to achieve this goal is conformal prediction (CP), which transforms an arbitrary base predictor into a set predictor with coverage guarantees. While CP certifies the predicted set to contain the target quantity with a user-defined tolerance, it does not provide control over the average size of the predicted sets, i.e., over the informativeness of the prediction. In this work, a theoretical connection is established between the generalization properties of the base predictor and the informativeness of the resulting CP prediction sets. To this end, an upper bound is derived on the expected size of the CP set predictor that builds on generalization error bounds for the base predictor. The derived upper bound provides insights into the dependence of the average size of the CP set predictor on the amount of calibration data, the target reliability, and the generalization performance of the base predictor. The theoretical insights are validated using simple numerical regression and classification tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共形预测的普遍性和信息量
机器学习模块能否安全地集成到决策过程中,取决于其量化不确定性的能力。实现这一目标的流行技术是保形预测(CP),它将任意基准预测器转换为具有覆盖保证的集合预测器。虽然 CP 可以证明预测集合包含用户定义容差的目标量,但它无法控制预测集合的平均大小,即预测的信息量。在这项工作中,我们在基础预测器的泛化特性和所得到的 CP 预测集的信息量之间建立了理论联系。为此,以基本预测器的泛化误差边界为基础,推导出了 CP 预测集预期大小的上界。推导出的上界有助于深入了解 CP 集预测器的平均大小与标定数据量、目标可靠性和基础预测器的泛化性能之间的关系。这些理论见解通过简单的数值回归和分类任务得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO CSI Feedback using Channel Prediction: How to Avoid Machine Learning at UE? Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation Electrochemical Communication in Bacterial Biofilms: A Study on Potassium Stimulation and Signal Transmission Semantics-Empowered Space-Air-Ground-Sea Integrated Network: New Paradigm, Frameworks, and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1