Deep Learning-Based Adaptive Joint Source-Channel Coding using Hypernetworks

Songjie Xie, Hengtao He, Hongru Li, Shenghui Song, Jun Zhang, Ying-Jun Angela Zhang, Khaled B. Letaief
{"title":"Deep Learning-Based Adaptive Joint Source-Channel Coding using Hypernetworks","authors":"Songjie Xie, Hengtao He, Hongru Li, Shenghui Song, Jun Zhang, Ying-Jun Angela Zhang, Khaled B. Letaief","doi":"arxiv-2401.11155","DOIUrl":null,"url":null,"abstract":"Deep learning-based joint source-channel coding (DJSCC) is expected to be a\nkey technique for {the} next-generation wireless networks. However, the\nexisting DJSCC schemes still face the challenge of channel adaptability as they\nare typically trained under specific channel conditions. In this paper, we\npropose a generic framework for channel-adaptive DJSCC by utilizing\nhypernetworks. To tailor the hypernetwork-based framework for communication\nsystems, we propose a memory-efficient hypernetwork parameterization and then\ndevelop a channel-adaptive DJSCC network, named Hyper-AJSCC. Compared with\nexisting adaptive DJSCC based on the attention mechanism, Hyper-AJSCC\nintroduces much fewer parameters and can be seamlessly combined with various\nexisting DJSCC networks without any substantial modifications to their neural\nnetwork architecture. Extensive experiments demonstrate the better adaptability\nto channel conditions and higher memory efficiency of Hyper-AJSCC compared with\nstate-of-the-art baselines.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.11155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning-based joint source-channel coding (DJSCC) is expected to be a key technique for {the} next-generation wireless networks. However, the existing DJSCC schemes still face the challenge of channel adaptability as they are typically trained under specific channel conditions. In this paper, we propose a generic framework for channel-adaptive DJSCC by utilizing hypernetworks. To tailor the hypernetwork-based framework for communication systems, we propose a memory-efficient hypernetwork parameterization and then develop a channel-adaptive DJSCC network, named Hyper-AJSCC. Compared with existing adaptive DJSCC based on the attention mechanism, Hyper-AJSCC introduces much fewer parameters and can be seamlessly combined with various existing DJSCC networks without any substantial modifications to their neural network architecture. Extensive experiments demonstrate the better adaptability to channel conditions and higher memory efficiency of Hyper-AJSCC compared with state-of-the-art baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用超网络进行基于深度学习的自适应源-信道联合编码
基于深度学习的联合信源信道编码(DJSCC)有望成为下一代无线网络的关键技术。然而,现有的 DJSCC 方案仍然面临信道适应性的挑战,因为它们通常是在特定信道条件下进行训练的。本文提出了一个利用超网络实现信道自适应 DJSCC 的通用框架。为了为通信系统量身定制基于超网络的框架,我们提出了一种具有内存效率的超网络参数化方法,然后开发了一种信道自适应 DJSCC 网络,命名为 Hyper-AJSCC。与现有的基于注意力机制的自适应 DJSCC 相比,Hyper-AJSCC 引入的参数要少得多,而且可以与现有的各种 DJSCC 网络无缝结合,无需对其神经网络架构进行任何实质性修改。大量实验证明,与最先进的基线相比,Hyper-AJSCC 具有更好的信道条件适应性和更高的内存效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO CSI Feedback using Channel Prediction: How to Avoid Machine Learning at UE? Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation Electrochemical Communication in Bacterial Biofilms: A Study on Potassium Stimulation and Signal Transmission Semantics-Empowered Space-Air-Ground-Sea Integrated Network: New Paradigm, Frameworks, and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1