J. G. Hernández-Calderón, E. Benítez-Guerrero, J. R. Rojano-Cáceres, Carmen Mezura-Godoy
{"title":"Mining User-Object Interaction Data for Student Modeling in Intelligent Learning Environments","authors":"J. G. Hernández-Calderón, E. Benítez-Guerrero, J. R. Rojano-Cáceres, Carmen Mezura-Godoy","doi":"10.1134/s036176882308008x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This work seeks to contribute to the development of intelligent environments by presenting an approach oriented to the identification of On-Task and Off-Task behaviors in educational settings. This is accomplished by monitoring and analyzing the user-object interactions that users manifest while performing academic activities with a tangible-intangible hybrid system in a university intelligent environment configuration. With the proposal of a framework and the Orange Data Mining tool and the Neural Network, Random Forest, Naive Bayes, and Tree classification models, training and testing was carried out with the user-object interaction records of the 13 students (11 for training and two for testing) to identify representative sequences of behavior from user-object interaction records. The two models that had the best results, despite the small number of data, were the Neural Network and Naive Bayes. Although a more significant amount of data is necessary to perform a classification adequately, the process allowed exemplifying this process so that it can later be fully incorporated into an intelligent educational system.</p>","PeriodicalId":54555,"journal":{"name":"Programming and Computer Software","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programming and Computer Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s036176882308008x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This work seeks to contribute to the development of intelligent environments by presenting an approach oriented to the identification of On-Task and Off-Task behaviors in educational settings. This is accomplished by monitoring and analyzing the user-object interactions that users manifest while performing academic activities with a tangible-intangible hybrid system in a university intelligent environment configuration. With the proposal of a framework and the Orange Data Mining tool and the Neural Network, Random Forest, Naive Bayes, and Tree classification models, training and testing was carried out with the user-object interaction records of the 13 students (11 for training and two for testing) to identify representative sequences of behavior from user-object interaction records. The two models that had the best results, despite the small number of data, were the Neural Network and Naive Bayes. Although a more significant amount of data is necessary to perform a classification adequately, the process allowed exemplifying this process so that it can later be fully incorporated into an intelligent educational system.
期刊介绍:
Programming and Computer Software is a peer reviewed journal devoted to problems in all areas of computer science: operating systems, compiler technology, software engineering, artificial intelligence, etc.