Scene Text Detection Using HRNet and Spatial Attention Mechanism

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Programming and Computer Software Pub Date : 2024-01-24 DOI:10.1134/s0361768823080212
Qingsong Tang, Zhangyan Jiang, Bolin Pan, Jinting Guo, Wuming Jiang
{"title":"Scene Text Detection Using HRNet and Spatial Attention Mechanism","authors":"Qingsong Tang, Zhangyan Jiang, Bolin Pan, Jinting Guo, Wuming Jiang","doi":"10.1134/s0361768823080212","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>To better extract the features from text instances with various shapes, a scene text detector using High Resolution Net (HRNet) and spatial attention mechanism is proposed in this paper. Specifically, we use HRNetv2-W18 as the backbone network to extract the text feature in text instances with complex shapes. Considering that the scene text instance is usually small, to avoid too small feature size, we optimize HRNet through deformable convolution and Smooth Maximum Unit (SMU) activation function, so that the network can retain more detail information and location information of the text instance. In addition, a Text Region Attention Module (TRAM) is added after the backbone to make it pay more attention to the text location information and a loss function is used to TRAM, so that the network can learn the features better. The experimental results illustrate that the proposed method can compete with the state-of-the-art methods. Code is available at: https://github.com/zhangyan1005/HR-DBNet.</p>","PeriodicalId":54555,"journal":{"name":"Programming and Computer Software","volume":"53 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programming and Computer Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s0361768823080212","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

To better extract the features from text instances with various shapes, a scene text detector using High Resolution Net (HRNet) and spatial attention mechanism is proposed in this paper. Specifically, we use HRNetv2-W18 as the backbone network to extract the text feature in text instances with complex shapes. Considering that the scene text instance is usually small, to avoid too small feature size, we optimize HRNet through deformable convolution and Smooth Maximum Unit (SMU) activation function, so that the network can retain more detail information and location information of the text instance. In addition, a Text Region Attention Module (TRAM) is added after the backbone to make it pay more attention to the text location information and a loss function is used to TRAM, so that the network can learn the features better. The experimental results illustrate that the proposed method can compete with the state-of-the-art methods. Code is available at: https://github.com/zhangyan1005/HR-DBNet.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 HRNet 和空间注意力机制进行场景文本检测
摘要 为了更好地从形状各异的文本实例中提取特征,本文提出了一种使用高分辨率网络(HRNet)和空间注意力机制的场景文本检测器。具体来说,我们使用 HRNetv2-W18 作为骨干网络来提取形状复杂的文本实例中的文本特征。考虑到场景文本实例通常较小,为避免特征尺寸过小,我们通过可变形卷积和平滑最大单元(Smooth Maximum Unit,SMU)激活函数对 HRNet 进行了优化,使网络能够保留更多文本实例的细节信息和位置信息。此外,我们还在骨干网之后添加了文本区域关注模块(TRAM),使其更加关注文本位置信息,并为 TRAM 使用了损失函数,从而使网络能够更好地学习特征。实验结果表明,所提出的方法可以与最先进的方法相媲美。代码见:https://github.com/zhangyan1005/HR-DBNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Programming and Computer Software
Programming and Computer Software 工程技术-计算机:软件工程
CiteScore
1.60
自引率
28.60%
发文量
35
审稿时长
>12 weeks
期刊介绍: Programming and Computer Software is a peer reviewed journal devoted to problems in all areas of computer science: operating systems, compiler technology, software engineering, artificial intelligence, etc.
期刊最新文献
Comparative Efficiency Analysis of Hashing Algorithms for Use in zk-SNARK Circuits in Distributed Ledgers Constructing the Internal Voronoi Diagram of Polygonal Figure Using the Sweepline Method RuGECToR: Rule-Based Neural Network Model for Russian Language Grammatical Error Correction Secure Messaging Application Development: Based on Post-Quantum Algorithms CSIDH, Falcon, and AES Symmetric Key Cryptosystem Analytical Review of Confidential Artificial Intelligence: Methods and Algorithms for Deployment in Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1