Entropic Conditional Central Limit Theorem and Hadamard Compression

Zhi-Ming Ma, Liu-Quan Yao, Shuai Yuan, Hua-Zi Zhang
{"title":"Entropic Conditional Central Limit Theorem and Hadamard Compression","authors":"Zhi-Ming Ma, Liu-Quan Yao, Shuai Yuan, Hua-Zi Zhang","doi":"arxiv-2401.11383","DOIUrl":null,"url":null,"abstract":"We make use of an entropic property to establish a convergence theorem (Main\nTheorem), which reveals that the conditional entropy measures the asymptotic\nGaussianity. As an application, we establish the {\\it entropic conditional\ncentral limit theorem} (CCLT), which is stronger than the classical CCLT. As\nanother application, we show that continuous input under iterated Hadamard\ntransform, almost every distribution of the output conditional on the values of\nthe previous signals will tend to Gaussian, and the conditional distribution is\nin fact insensitive to the condition. The results enable us to make a theoretic\nstudy concerning Hadamard compression, which provides a solid theoretical\nanalysis supporting the simulation results in previous literature. We show also\nthat the conditional Fisher information can be used to measure the asymptotic\nGaussianity.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.11383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We make use of an entropic property to establish a convergence theorem (Main Theorem), which reveals that the conditional entropy measures the asymptotic Gaussianity. As an application, we establish the {\it entropic conditional central limit theorem} (CCLT), which is stronger than the classical CCLT. As another application, we show that continuous input under iterated Hadamard transform, almost every distribution of the output conditional on the values of the previous signals will tend to Gaussian, and the conditional distribution is in fact insensitive to the condition. The results enable us to make a theoretic study concerning Hadamard compression, which provides a solid theoretical analysis supporting the simulation results in previous literature. We show also that the conditional Fisher information can be used to measure the asymptotic Gaussianity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
熵条件中心极限定理和 Hadamard 压缩
我们利用熵属性建立了一个收敛定理(主定理),揭示了条件熵衡量渐近高斯性。作为应用,我们建立了{it entropic conditionalcentral limit theorem}(CCLT),它比经典的 CCLT 更强。作为另一个应用,我们证明了在迭代哈达玛变换下的连续输入,几乎所有以先前信号值为条件的输出分布都将趋于高斯分布,而且条件分布实际上对条件不敏感。这些结果使我们能够对 Hadamard 压缩进行理论研究,为之前文献中的模拟结果提供了坚实的理论分析支持。我们还证明了条件费雪信息可以用来测量渐近高斯性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO CSI Feedback using Channel Prediction: How to Avoid Machine Learning at UE? Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation Electrochemical Communication in Bacterial Biofilms: A Study on Potassium Stimulation and Signal Transmission Semantics-Empowered Space-Air-Ground-Sea Integrated Network: New Paradigm, Frameworks, and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1