Challenges in scaling of IPVD deposited Ta barriers on OSG low-k films: Carbonization of Ta by CHx radicals generated through VUV-induced decomposition of carbon-containing groups
Alexey N. Ryabinkin, Alexey S. Vishnevskiy, Sergej Naumov, Alexander O. Serov, Konstantin I. Maslakov, Dmitry S. Seregin, Dmitry A. Vorotyntsev, Alexander F. Pal, Tatyana V. Rakhimova, Konstantin A. Vorotilov, Mikhail R. Baklanov
{"title":"Challenges in scaling of IPVD deposited Ta barriers on OSG low-k films: Carbonization of Ta by CHx radicals generated through VUV-induced decomposition of carbon-containing groups","authors":"Alexey N. Ryabinkin, Alexey S. Vishnevskiy, Sergej Naumov, Alexander O. Serov, Konstantin I. Maslakov, Dmitry S. Seregin, Dmitry A. Vorotyntsev, Alexander F. Pal, Tatyana V. Rakhimova, Konstantin A. Vorotilov, Mikhail R. Baklanov","doi":"10.1002/ppap.202300206","DOIUrl":null,"url":null,"abstract":"The effect of vacuum ultraviolet (VUV) radiation during ionized physical vapor deposition (IPVD) of tantalum barriers on various porous organosilicate glass low-<i>k</i> SiCOH films is studied using advanced diagnostics and quantum chemical calculations. VUV photons break the Si–C bonds, releasing hydrocarbon radicals from the pore surfaces. These radicals, trapped in pores that are partially sealed by tantalum deposition, can either react with tantalum to form carbide-like compounds, TaC<sub><i>x</i></sub>, or be redeposited in the pores as CH<sub><i>x</i></sub> polymers. This is evidenced by a decrease in CH<sub>3</sub> groups that correlates with an increase in TaC<sub><i>x</i></sub>. The formation of TaC<sub><i>x</i></sub> poses a significant challenge in the back end of line (BEOL) technology when reducing the barrier thickness.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202300206","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of vacuum ultraviolet (VUV) radiation during ionized physical vapor deposition (IPVD) of tantalum barriers on various porous organosilicate glass low-k SiCOH films is studied using advanced diagnostics and quantum chemical calculations. VUV photons break the Si–C bonds, releasing hydrocarbon radicals from the pore surfaces. These radicals, trapped in pores that are partially sealed by tantalum deposition, can either react with tantalum to form carbide-like compounds, TaCx, or be redeposited in the pores as CHx polymers. This is evidenced by a decrease in CH3 groups that correlates with an increase in TaCx. The formation of TaCx poses a significant challenge in the back end of line (BEOL) technology when reducing the barrier thickness.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.