Light Sensitive Liposomes: A Novel Strategy for Targeted Drug Delivery.

Q2 Pharmacology, Toxicology and Pharmaceutics Pharmaceutical nanotechnology Pub Date : 2025-01-01 DOI:10.2174/0122117385271651231228073850
Chintan Aundhia, Ghanshyam Parmar, Chitrali Talele, Dipali Talele, Avinsh Kumar Seth
{"title":"Light Sensitive Liposomes: A Novel Strategy for Targeted Drug Delivery.","authors":"Chintan Aundhia, Ghanshyam Parmar, Chitrali Talele, Dipali Talele, Avinsh Kumar Seth","doi":"10.2174/0122117385271651231228073850","DOIUrl":null,"url":null,"abstract":"<p><p>Light-sensitive liposomes have emerged as a promising platform for drug delivery, offering the potential for precise control over drug release and targeted therapy. These lipid-based nanoparticles possess photoresponsive properties, allowing them to undergo structural changes or release therapeutic payloads upon exposure to specific wavelengths of light. This review presents an overview of the design principles, fabrication methods, and applications of light-sensitive liposomes in drug delivery. Further, this article also discusses the incorporation of light-sensitive moieties, such as azobenzene, spiropyran, and diarylethene, into liposomal structures, enabling spatiotemporal control over drug release. The utilization of photosensitizers and imaging agents to enhance the functionality and versatility of light-sensitive liposomes is also highlighted. Finally, the recent advances, challenges, and future directions in the field, emphasizing the potential for these innovative nanocarriers to revolutionize targeted therapeutics, are also discussed.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"41-54"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385271651231228073850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Light-sensitive liposomes have emerged as a promising platform for drug delivery, offering the potential for precise control over drug release and targeted therapy. These lipid-based nanoparticles possess photoresponsive properties, allowing them to undergo structural changes or release therapeutic payloads upon exposure to specific wavelengths of light. This review presents an overview of the design principles, fabrication methods, and applications of light-sensitive liposomes in drug delivery. Further, this article also discusses the incorporation of light-sensitive moieties, such as azobenzene, spiropyran, and diarylethene, into liposomal structures, enabling spatiotemporal control over drug release. The utilization of photosensitizers and imaging agents to enhance the functionality and versatility of light-sensitive liposomes is also highlighted. Finally, the recent advances, challenges, and future directions in the field, emphasizing the potential for these innovative nanocarriers to revolutionize targeted therapeutics, are also discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光敏脂质体:靶向给药的新策略。
光敏脂质体已成为一种前景广阔的给药平台,具有精确控制药物释放和靶向治疗的潜力。这些基于脂质的纳米颗粒具有光致伸缩特性,在特定波长的光照射下,它们可以发生结构变化或释放治疗载荷。这篇综述概述了光敏脂质体的设计原理、制造方法以及在给药方面的应用。此外,本文还讨论了在脂质体结构中加入偶氮苯、螺吡喃和二乙烯等光敏分子,从而实现对药物释放的时空控制。此外,还重点介绍了如何利用光敏剂和成像剂来增强光敏脂质体的功能性和多功能性。最后,还讨论了该领域的最新进展、挑战和未来方向,强调了这些创新型纳米载体彻底改变靶向治疗的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmaceutical nanotechnology
Pharmaceutical nanotechnology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.20
自引率
0.00%
发文量
46
期刊介绍: Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.
期刊最新文献
Advancements in Carbon Nanotube-based Drug Delivery Systems: Innovations, Challenges, and Future Directions. Green Synthesis of Zinc Oxide Nanoparticles from Vernonia amygdalina Leaf Extract and Evaluation of their Antioxidant, Antimicrobial, and Photocatalytic Activities. Design and Evaluation of Econazole-Loaded Nanostructured Lipid Carriers for Ocular Treatment of Fungal Keratitis: In vitro and Ex vivo Studies. A Review on Green Synthesis of Copper Nanoparticles Using Plant Extracts: Methods, Characterization, and Applications. Cracking the Code: How Nano-Informatics is Crafting Intelligent Nano-Weapons to Outsmart Multiple Drug Resistance (MDR).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1