{"title":"Multiscale hydrodynamics in thrust bearing involving surface roughness","authors":"Chen Huang, Yongbin Zhang","doi":"10.1007/s00161-023-01275-z","DOIUrl":null,"url":null,"abstract":"<div><p>When the surface roughness is comparable to the surface separation in a hydrodynamic thrust bearing, the effect of the surface roughness should be considered. In the condition of low bearing clearances such as on the scales of 1 nm and 10 nm, normally not only the surface roughness but also the physically adsorbed layer on the bearing surface should be simultaneously considered in evaluating the bearing performance. The present paper presents the numerical calculation results of the surface roughness influences on the hydrodynamic pressure and carried load of the inclined fixed pad thrust bearing with low bearing clearances when the effect of the adsorbed layer is incorporated. It is shown that the influence of the surface roughness is strongly dependent on the adsorbed layer and it is significantly increased with the increase in the interaction strength between the fluid and the bearing surface when the bearing clearance is low. For a weak fluid-bearing surface interaction, the results are close to those obtained from the classical hydrodynamic theory indicating the increase in the hydrodynamic pressure and carried load of the bearing with the increase in the surface roughness, while for the medium or strong fluid-bearing surface interactions, this surface roughness effect is much stronger. The results reveal the new mechanism in the studied model of the bearing regarding the coupled effects of the surface roughness and the physically adsorbed layer on the bearing surface.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 3","pages":"445 - 458"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-023-01275-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
When the surface roughness is comparable to the surface separation in a hydrodynamic thrust bearing, the effect of the surface roughness should be considered. In the condition of low bearing clearances such as on the scales of 1 nm and 10 nm, normally not only the surface roughness but also the physically adsorbed layer on the bearing surface should be simultaneously considered in evaluating the bearing performance. The present paper presents the numerical calculation results of the surface roughness influences on the hydrodynamic pressure and carried load of the inclined fixed pad thrust bearing with low bearing clearances when the effect of the adsorbed layer is incorporated. It is shown that the influence of the surface roughness is strongly dependent on the adsorbed layer and it is significantly increased with the increase in the interaction strength between the fluid and the bearing surface when the bearing clearance is low. For a weak fluid-bearing surface interaction, the results are close to those obtained from the classical hydrodynamic theory indicating the increase in the hydrodynamic pressure and carried load of the bearing with the increase in the surface roughness, while for the medium or strong fluid-bearing surface interactions, this surface roughness effect is much stronger. The results reveal the new mechanism in the studied model of the bearing regarding the coupled effects of the surface roughness and the physically adsorbed layer on the bearing surface.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.