Characteristics of soil organic carbon fractions in four vegetation communities of an inland salt marsh

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Carbon Balance and Management Pub Date : 2024-01-28 DOI:10.1186/s13021-024-00248-2
Manping Kang, ChengZhang Zhao, Min Ma, Xiaoya Li
{"title":"Characteristics of soil organic carbon fractions in four vegetation communities of an inland salt marsh","authors":"Manping Kang,&nbsp;ChengZhang Zhao,&nbsp;Min Ma,&nbsp;Xiaoya Li","doi":"10.1186/s13021-024-00248-2","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The study of soil organic carbon characteristics and its relationship with soil environment and vegetation types is of great significance to the evaluation of soil carbon sink provided by inland salt marshes. This paper reports the characteristics of soil organic carbon fractions in 0–50 cm soil layers at four vegetation communities of the Qinwangchuan salt marsh.</p><h3>Results</h3><p>(1) The soil organic carbon content of Phragmites australis community (9.60 ± 0.32 <i>g</i>/kg) was found to be higher than that of Salicornia europae (7.75 ± 0.18 <i>g</i>/kg) and Tamarix ramosissima (4.96 ± 0.18 <i>g</i>/kg) and Suaeda corniculata community (4.55 ± 0.11 <i>g</i>/kg). (2) The soil dissolved organic carbon, particulate organic carbon and soil microbial biomass carbon in 0–50 cm soil layer of Phragmites australis community were higher, which were 0.46 ± 0.01 <i>g</i>/kg, 2.81 ± 0.06 <i>g</i>/kg and 0.31 ± 0.01 <i>g</i>/kg, respectively. (3) Soil organic carbon was positively correlated with dissolved organic carbon, particulate organic carbon, and microbial biomass carbon, and negatively correlated with easily oxidized organic carbon. (4) Above-ground biomass has a strong direct positive effect on soil organic carbon, total nitrogen and pH have a strong direct positive effect on microbial biomass carbon content, pH and average density have a strong direct negative effect on easily oxidized organic carbon, and particulate organic carbon.</p><h3>Conclusions</h3><p>The interaction between plant community characteristics and soil factors is an important driving factor for soil organic carbon accumulation in inland salt marshes.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823692/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-024-00248-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The study of soil organic carbon characteristics and its relationship with soil environment and vegetation types is of great significance to the evaluation of soil carbon sink provided by inland salt marshes. This paper reports the characteristics of soil organic carbon fractions in 0–50 cm soil layers at four vegetation communities of the Qinwangchuan salt marsh.

Results

(1) The soil organic carbon content of Phragmites australis community (9.60 ± 0.32 g/kg) was found to be higher than that of Salicornia europae (7.75 ± 0.18 g/kg) and Tamarix ramosissima (4.96 ± 0.18 g/kg) and Suaeda corniculata community (4.55 ± 0.11 g/kg). (2) The soil dissolved organic carbon, particulate organic carbon and soil microbial biomass carbon in 0–50 cm soil layer of Phragmites australis community were higher, which were 0.46 ± 0.01 g/kg, 2.81 ± 0.06 g/kg and 0.31 ± 0.01 g/kg, respectively. (3) Soil organic carbon was positively correlated with dissolved organic carbon, particulate organic carbon, and microbial biomass carbon, and negatively correlated with easily oxidized organic carbon. (4) Above-ground biomass has a strong direct positive effect on soil organic carbon, total nitrogen and pH have a strong direct positive effect on microbial biomass carbon content, pH and average density have a strong direct negative effect on easily oxidized organic carbon, and particulate organic carbon.

Conclusions

The interaction between plant community characteristics and soil factors is an important driving factor for soil organic carbon accumulation in inland salt marshes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内陆盐沼四个植被群落中土壤有机碳组分的特征。
背景:研究土壤有机碳特征及其与土壤环境和植被类型的关系,对评价内陆盐沼土壤碳汇具有重要意义。结果:(1)秦王川盐沼4个植被群落0-50 cm土层土壤有机碳含量(9.60 ± 0.32 g/kg)均高于欧鼠李群落(7.75 ± 0.18 g/kg)和柽柳群落(4.2)葭萌群落 0~50 cm 土层土壤溶解有机碳、颗粒有机碳和土壤微生物生物量碳含量较高,分别为(0.46±0.01)g/kg、(2.81±0.06)g/kg 和(0.31±0.01)g/kg。(3)土壤有机碳与溶解有机碳、颗粒有机碳和微生物生物量碳呈正相关,与易氧化有机碳呈负相关。(4)地上生物量对土壤有机碳有较强的直接正效应,全氮和pH对微生物生物量碳含量有较强的直接正效应,pH和平均密度对易氧化有机碳和颗粒有机碳有较强的直接负效应:植物群落特征与土壤因子之间的相互作用是内陆盐沼土壤有机碳积累的重要驱动因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Balance and Management
Carbon Balance and Management Environmental Science-Management, Monitoring, Policy and Law
CiteScore
7.60
自引率
0.00%
发文量
17
审稿时长
14 weeks
期刊介绍: Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle. The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community. This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system. Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.
期刊最新文献
Urban land use optimization prediction considering carbon neutral development goals: a case study of Taihu Bay Core area in China Slowly getting there: a review of country experience on estimating emissions and removals from forest degradation Methane cycling in temperate forests Stand structure and Brazilian pine as key determinants of carbon stock in a subtropical Atlantic forest Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1