首页 > 最新文献

Carbon Balance and Management最新文献

英文 中文
Urban land use optimization prediction considering carbon neutral development goals: a case study of Taihu Bay Core area in China
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-30 DOI: 10.1186/s13021-024-00285-x
Mingfang Tang, Yuejing Rong, Lifu Zheng, Yue Luo, Kai Li, Xin Fan

Background

Given the increasing commitment of numerous nations to achieving future carbon neutrality, urban development planning that integrating carbon storage considerations plays a crucial role in enhancing urban carbon efficiency and promoting regional sustainable development. Previous studies have indicated that optimizing land use structure and quality is essential for regional carbon storage management. Taking the core area of Taihu Bay as study area, this study innovatively combined high-precision urban 3D data to account for the whole urban carbon pools of buildings, vegetation, soils, water. Then, multi-objective linear programming model and PLUS (Patch-generating Land Use Simulation) model were applied at patch scale to assess and compare carbon storage in various scenarios, considering both carbon storage maximization and urban development requirements.

Results

The results were presented as follows. (1) Urban woodland carbon pool accounts for only a fraction of total carbon pool, and the role of soil and building carbon pools cannot be ignored. (2) Compared with the current situation, the carbon-growth optimized scenario will lead to the increase of total carbon storage by 38,568.31 tons. (3) Carbon-growth optimized scenario has reduced carbon storage in Woodland, Cropland, Village, Water compared to the Natural growth scenario, but has increased carbon storage in Garden plots, Street, Urban district, Town and other areas.

Conclusions

Therefore, we find that for fast-growing cities, rationally planning built-up areas and woodland areas can achieve the twin goals of economic development and maximizing regional carbon storage. Furthermore, the implementation of new energy policies and projects such as green roofs can help to achieve regional carbon neutrality. The study provides new insights into the accounting of carbon pools within cities and the simulation of fine-grained land use planning based on the dual objectives of carbon stock maximization and urban development.

{"title":"Urban land use optimization prediction considering carbon neutral development goals: a case study of Taihu Bay Core area in China","authors":"Mingfang Tang,&nbsp;Yuejing Rong,&nbsp;Lifu Zheng,&nbsp;Yue Luo,&nbsp;Kai Li,&nbsp;Xin Fan","doi":"10.1186/s13021-024-00285-x","DOIUrl":"10.1186/s13021-024-00285-x","url":null,"abstract":"<div><h3>Background</h3><p>Given the increasing commitment of numerous nations to achieving future carbon neutrality, urban development planning that integrating carbon storage considerations plays a crucial role in enhancing urban carbon efficiency and promoting regional sustainable development. Previous studies have indicated that optimizing land use structure and quality is essential for regional carbon storage management. Taking the core area of Taihu Bay as study area, this study innovatively combined high-precision urban 3D data to account for the whole urban carbon pools of buildings, vegetation, soils, water. Then, multi-objective linear programming model and PLUS (Patch-generating Land Use Simulation) model were applied at patch scale to assess and compare carbon storage in various scenarios, considering both carbon storage maximization and urban development requirements.</p><h3>Results</h3><p>The results were presented as follows. (1) Urban woodland carbon pool accounts for only a fraction of total carbon pool, and the role of soil and building carbon pools cannot be ignored. (2) Compared with the current situation, the carbon-growth optimized scenario will lead to the increase of total carbon storage by 38,568.31 tons. (3) Carbon-growth optimized scenario has reduced carbon storage in Woodland, Cropland, Village, Water compared to the Natural growth scenario, but has increased carbon storage in Garden plots, Street, Urban district, Town and other areas.</p><h3>Conclusions</h3><p>Therefore, we find that for fast-growing cities, rationally planning built-up areas and woodland areas can achieve the twin goals of economic development and maximizing regional carbon storage. Furthermore, the implementation of new energy policies and projects such as green roofs can help to achieve regional carbon neutrality. The study provides new insights into the accounting of carbon pools within cities and the simulation of fine-grained land use planning based on the dual objectives of carbon stock maximization and urban development.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00285-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Slowly getting there: a review of country experience on estimating emissions and removals from forest degradation 进展缓慢:各国估算森林退化所致排放量和清除量的经验回顾
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-25 DOI: 10.1186/s13021-024-00281-1
Till Neeff, Javier G. P. Gamarra, Andreas Vollrath, Erik Lindquist, Ghislaine Gill, Julian Fox, Jennifer Smith, Karen Dyson, Karis Tenneson, Marieke Sandker, Teopista Nakalema

Estimating emissions and removals from forest degradation is important, yet challenging, for many countries. This paper reports results from analysis of country reporting (to the United Nations Framework Convention on Climate Change and also to several climate finance initiatives) and key take-aways from a south-south exchange workshop among 17 countries with forest mitigation programmes. During the workshop discussions it became clear that, where forest degradation is a major source of emissions, governments want to include it when reporting on their mitigation efforts. However, challenges to accurately estimating emissions from degradation relate to defining forest degradation and setting the scope for estimating carbon stock changes; to detecting and monitoring degradation using earth observation data; and to estimating associated emissions and removals from field observation results. The paper concludes that recent and ongoing investments into data and analysis methods have helped improve forest degradation estimation, but further methodological work and continued effort will be needed.

对许多国家而言,估算森林退化的排放量和清除量非常重要,但也极具挑战性。本文报告了对国家报告(向《联合国气候变化框架公约》以及若干气候融资倡议)的分析结果,以及 17 个拥有森林减排计划的国家在南南交流研讨会上的主要收获。在研讨会的讨论中,我们清楚地认识到,如果森林退化是一个主要的排放源,各国政府希望在报告其减缓努力时将其包括在内。然而,准确估算退化产生的排放所面临的挑战涉及:森林退化的定义和碳储量变化估算范围的设定;利用地球观测数据检测和监测退化;以及根据实地观测结果估算相关排放和清除。本文的结论是,最近和正在进行的对数据和分析方法的投资有助于改善森林退化的估算,但还需要进一步的方法论工作和持续的努力。
{"title":"Slowly getting there: a review of country experience on estimating emissions and removals from forest degradation","authors":"Till Neeff,&nbsp;Javier G. P. Gamarra,&nbsp;Andreas Vollrath,&nbsp;Erik Lindquist,&nbsp;Ghislaine Gill,&nbsp;Julian Fox,&nbsp;Jennifer Smith,&nbsp;Karen Dyson,&nbsp;Karis Tenneson,&nbsp;Marieke Sandker,&nbsp;Teopista Nakalema","doi":"10.1186/s13021-024-00281-1","DOIUrl":"10.1186/s13021-024-00281-1","url":null,"abstract":"<div><p>Estimating emissions and removals from forest degradation is important, yet challenging, for many countries. This paper reports results from analysis of country reporting (to the United Nations Framework Convention on Climate Change and also to several climate finance initiatives) and key take-aways from a south-south exchange workshop among 17 countries with forest mitigation programmes. During the workshop discussions it became clear that, where forest degradation is a major source of emissions, governments want to include it when reporting on their mitigation efforts. However, challenges to accurately estimating emissions from degradation relate to defining forest degradation and setting the scope for estimating carbon stock changes; to detecting and monitoring degradation using earth observation data; and to estimating associated emissions and removals from field observation results. The paper concludes that recent and ongoing investments into data and analysis methods have helped improve forest degradation estimation, but further methodological work and continued effort will be needed.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00281-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methane cycling in temperate forests 温带森林的甲烷循环。
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-10-22 DOI: 10.1186/s13021-024-00283-z
Kathryn Wigley, Charlotte Armstrong, Simeon J. Smaill, Nicki M. Reid, Laura Kiely, Steve A. Wakelin

Temperate forest soils are considered significant methane (CH4) sinks, but other methane sources and sinks within these forests, such as trees, litter, deadwood, and the production of volatile organic compounds are not well understood. Improved understanding of all CH4 fluxes in temperate forests could help mitigate CH4 emissions from other sources and improve the accuracy of global greenhouse gas budgets. This review highlights the characteristics of temperate forests that influence CH4 flux and assesses the current understanding of the CH4 cycle in temperate forests, with a focus on those managed for specific purposes. Methane fluxes from trees, litter, deadwood, and soil, as well as the interaction of canopy-released volatile organic compounds on atmospheric methane chemistry are quantified, the processes involved and factors (biological, climatic, management) affecting the magnitude and variance of these fluxes are discussed. Temperate forests are unique in that they are extremely variable due to strong seasonality and significant human intervention. These features control CH4 flux and need to be considered in CH4 budgets. The literature confirmed that temperate planted forest soils are a significant CH4 sink, but tree stems are a small CH4 source. CH4 fluxes from foliage and deadwood vary, and litter fluxes are negligible. The production of volatile organic compounds could increase CH4’s lifetime in the atmosphere, but current in-forest measurements are insufficient to determine the magnitude of any effect. For all sources and sinks more research is required into the mechanisms and microbial community driving CH4 fluxes. The variability in CH4 fluxes within each component of the forest, is also not well understood and has led to overestimation of CH4 fluxes when scaling up measurements to a forest or global scale. A roadmap for sampling and scaling is required to ensure that all CH4 sinks and sources within temperate forests are accurately accounted for and able to be included in CH4 budgets and models to ensure accurate estimates of the contribution of temperate planted forests to the global CH4 cycle.

温带森林土壤被认为是重要的甲烷(CH4)汇,但人们对这些森林中的其他甲烷源和汇(如树木、枯枝落叶、枯木和挥发性有机化合物的产生)还不甚了解。加深对温带森林中所有甲烷通量的了解有助于减少其他来源的甲烷排放,并提高全球温室气体预算的准确性。本综述强调了影响甲烷通量的温带森林特征,并评估了目前对温带森林甲烷循环的了解,重点关注那些为特定目的而管理的森林。对来自树木、枯枝落叶、枯死木和土壤的甲烷通量以及树冠释放的挥发性有机化合物与大气甲烷化学的相互作用进行了量化,并讨论了影响这些通量的大小和差异的相关过程和因素(生物、气候、管理)。温带森林的独特之处在于,由于强烈的季节性和大量的人为干预,它们的变化非常大。这些特点控制着甲烷通量,需要在甲烷预算中加以考虑。文献证实,温带人工林土壤是一个重要的甲烷汇,但树茎是一个很小的甲烷源。树叶和枯木的甲烷通量各不相同,而枯枝落叶的通量可以忽略不计。挥发性有机化合物的产生可能会延长 CH4 在大气中的停留时间,但目前的森林测量不足以确定任何影响的大小。对于所有源和汇,都需要对驱动 CH4 通量的机制和微生物群落进行更多研究。人们对森林各组成部分内 CH4 通量的变化也不甚了解,这导致在将测量结果放大到森林或全球范围时高估了 CH4 通量。需要制定一个采样和放大路线图,以确保温带森林中的所有甲烷汇和源都得到准确计算,并能够纳入甲烷预算和模型中,从而确保准确估算温带人工林对全球甲烷循环的贡献。
{"title":"Methane cycling in temperate forests","authors":"Kathryn Wigley,&nbsp;Charlotte Armstrong,&nbsp;Simeon J. Smaill,&nbsp;Nicki M. Reid,&nbsp;Laura Kiely,&nbsp;Steve A. Wakelin","doi":"10.1186/s13021-024-00283-z","DOIUrl":"10.1186/s13021-024-00283-z","url":null,"abstract":"<div><p>Temperate forest soils are considered significant methane (CH<sub>4</sub>) sinks, but other methane sources and sinks within these forests, such as trees, litter, deadwood, and the production of volatile organic compounds are not well understood. Improved understanding of all CH<sub>4</sub> fluxes in temperate forests could help mitigate CH<sub>4</sub> emissions from other sources and improve the accuracy of global greenhouse gas budgets. This review highlights the characteristics of temperate forests that influence CH<sub>4</sub> flux and assesses the current understanding of the CH<sub>4</sub> cycle in temperate forests, with a focus on those managed for specific purposes. Methane fluxes from trees, litter, deadwood, and soil, as well as the interaction of canopy-released volatile organic compounds on atmospheric methane chemistry are quantified, the processes involved and factors (biological, climatic, management) affecting the magnitude and variance of these fluxes are discussed. Temperate forests are unique in that they are extremely variable due to strong seasonality and significant human intervention. These features control CH<sub>4</sub> flux and need to be considered in CH<sub>4</sub> budgets. The literature confirmed that temperate planted forest soils are a significant CH<sub>4</sub> sink, but tree stems are a small CH<sub>4</sub> source. CH<sub>4</sub> fluxes from foliage and deadwood vary, and litter fluxes are negligible. The production of volatile organic compounds could increase CH<sub>4</sub>’s lifetime in the atmosphere, but current in-forest measurements are insufficient to determine the magnitude of any effect. For all sources and sinks more research is required into the mechanisms and microbial community driving CH<sub>4</sub> fluxes. The variability in CH<sub>4</sub> fluxes within each component of the forest, is also not well understood and has led to overestimation of CH<sub>4</sub> fluxes when scaling up measurements to a forest or global scale. A roadmap for sampling and scaling is required to ensure that all CH<sub>4</sub> sinks and sources within temperate forests are accurately accounted for and able to be included in CH<sub>4</sub> budgets and models to ensure accurate estimates of the contribution of temperate planted forests to the global CH<sub>4</sub> cycle.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00283-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stand structure and Brazilian pine as key determinants of carbon stock in a subtropical Atlantic forest 林分结构和巴西松是亚热带大西洋森林碳储量的关键决定因素
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-10-19 DOI: 10.1186/s13021-024-00284-y
Vinicius Costa Cysneiros, Allan Libanio Pelissari, Afonso Figueiredo Filho

Background

Understanding the drivers of variations in carbon stocks is essential for developing the effective management strategies that contribute to mitigating climate change. Although a positive relationship between biodiversity and the aboveground carbon (AGC) has been widely reported for various Brazilian forest types, representing a win–win scenario for climate change mitigation, this association has not been commonly found in Brazilian subtropical forests. Therefore, in the present study, we aimed to evaluate the effects of Araucaria angustifolia, stand structure and species diversity in shaping AGC stocks in Brazilian subtropical mixed forest. We hypothesized that the effects on the AGC of stand structure and diversity would be mediated by A. angustifolia. We also evaluated the expectation of higher carbon stocks in protected forest as a result of their positive correlation with biodiversity conservation.

Results

We found that stand structure, followed by A. angustifolia, played the most important role in shaping the AGC stock. Our hypothesis was partially confirmed, the indirect effects of A. angustifolia on stand structure being found to have shaped the AGC. Similarly, our expectation was partially supported, with the higher AGC in the protected area being related not to diversity, but rather to the presence of larger trees, denser stands, and a greater abundance of A. angustifolia.

Conclusion

Although the win–win strategy between diversity conservation and carbon storage is not a peculiarity of Araucaria forests, we highlight the potential of these forests as a nature-based climate solution, maintaining high levels of carbon storage in harmony with the provision of keystone socio-economic resources.

背景了解碳储量变化的驱动因素对于制定有助于减缓气候变化的有效管理策略至关重要。虽然生物多样性与地上碳(AGC)之间的正相关关系在巴西各种森林类型中已被广泛报道,代表了减缓气候变化的双赢局面,但这种关联在巴西亚热带森林中并不常见。因此,在本研究中,我们旨在评估巴西亚热带混交林Araucaria angustifolia、林分结构和物种多样性对AGC储量形成的影响。我们假设,林分结构和多样性对 AGC 的影响将由 A. angustifolia 介导。结果我们发现,林分结构对 AGC 储量的影响最大,其次是 A. angustifolia。我们的假设得到了部分证实,发现A. angustifolia对林分结构的间接影响塑造了AGC。同样,我们的预期也得到了部分支持,保护区内较高的 AGC 与多样性无关,而是与较大的树木、较密集的林分以及较丰富的 A. angustifolia 有关。结论虽然多样性保护与碳储存之间的双赢策略并非 Araucaria 森林的特质,但我们强调了这些森林作为基于自然的气候解决方案的潜力,在提供关键社会经济资源的同时保持高水平的碳储存。
{"title":"Stand structure and Brazilian pine as key determinants of carbon stock in a subtropical Atlantic forest","authors":"Vinicius Costa Cysneiros,&nbsp;Allan Libanio Pelissari,&nbsp;Afonso Figueiredo Filho","doi":"10.1186/s13021-024-00284-y","DOIUrl":"10.1186/s13021-024-00284-y","url":null,"abstract":"<div><h3>Background</h3><p>Understanding the drivers of variations in carbon stocks is essential for developing the effective management strategies that contribute to mitigating climate change. Although a positive relationship between biodiversity and the aboveground carbon (AGC) has been widely reported for various Brazilian forest types, representing a win–win scenario for climate change mitigation, this association has not been commonly found in Brazilian subtropical forests. Therefore, in the present study, we aimed to evaluate the effects of <i>Araucaria angustifolia</i>, stand structure and species diversity in shaping AGC stocks in Brazilian subtropical mixed forest. We hypothesized that the effects on the AGC of stand structure and diversity would be mediated by <i>A. angustifolia</i>. We also evaluated the expectation of higher carbon stocks in protected forest as a result of their positive correlation with biodiversity conservation.</p><h3>Results</h3><p>We found that stand structure, followed by <i>A. angustifolia</i>, played the most important role in shaping the AGC stock. Our hypothesis was partially confirmed, the indirect effects of <i>A. angustifolia</i> on stand structure being found to have shaped the AGC. Similarly, our expectation was partially supported, with the higher AGC in the protected area being related not to diversity, but rather to the presence of larger trees, denser stands, and a greater abundance of <i>A. angustifolia</i>.</p><h3>Conclusion</h3><p>Although the win–win strategy between diversity conservation and carbon storage is not a peculiarity of Araucaria forests, we highlight the potential of these forests as a nature-based climate solution, maintaining high levels of carbon storage in harmony with the provision of keystone socio-economic resources.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00284-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future 碳、气候和自然干扰:在不确定的未来了解森林碳稳定性的机制、挑战和工具综述
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-10-10 DOI: 10.1186/s13021-024-00282-0
Alex W. Dye, Rachel M. Houtman, Peng Gao, William R. L. Anderegg, Christopher J. Fettig, Jeffrey A. Hicke, John B. Kim, Christopher J. Still, Kevin Young, Karin L. Riley

In this review, we discuss current research on forest carbon risk from natural disturbance under climate change for the United States, with emphasis on advancements in analytical mapping and modeling tools that have potential to drive research for managing future long-term stability of forest carbon. As a natural mechanism for carbon storage, forests are a critical component of meeting climate mitigation strategies designed to combat anthropogenic emissions. Forests consist of long-lived organisms (trees) that can store carbon for centuries or more. However, trees have finite lifespans, and disturbances such as wildfire, insect and disease outbreaks, and drought can hasten tree mortality or reduce tree growth, thereby slowing carbon sequestration, driving carbon emissions, and reducing forest carbon storage in stable pools, particularly the live and standing dead portions that are counted in many carbon offset programs. Many forests have natural disturbance regimes, but climate change and human activities disrupt the frequency and severity of disturbances in ways that are likely to have consequences for the long-term stability of forest carbon. To minimize negative effects and maximize resilience of forest carbon, disturbance risks must be accounted for in carbon offset protocols, carbon management practices, and carbon mapping and modeling techniques. This requires detailed mapping and modeling of the quantities and distribution of forest carbon across the United States and hopefully one day globally; the frequency, severity, and timing of disturbances; the mechanisms by which disturbances affect carbon storage; and how climate change may alter each of these elements. Several tools (e.g. fire spread models, imputed forest inventory models, and forest growth simulators) exist to address one or more of the aforementioned items and can help inform management strategies that reduce forest carbon risk, maintain long-term stability of forest carbon, and further explore challenges, uncertainties, and opportunities for evaluating the continued potential of, and threats to, forests as viable mechanisms for forest carbon storage, including carbon offsets. A growing collective body of research and technological improvements have advanced the science, but we highlight and discuss key limitations, uncertainties, and gaps that remain.

在这篇综述中,我们讨论了美国目前对气候变化下自然干扰造成的森林碳风险的研究,重点是分析绘图和建模工具方面的进展,这些进展有可能推动对未来森林碳长期稳定性管理的研究。作为碳储存的自然机制,森林是实现旨在应对人为排放的气候减缓战略的关键组成部分。森林由寿命长的生物(树木)组成,可以储存碳数百年或更久。然而,树木的寿命是有限的,野火、昆虫和疾病爆发以及干旱等干扰会加速树木的死亡或减少树木的生长,从而减缓碳固存、推动碳排放并减少稳定库中的森林碳储存,特别是许多碳抵消项目中计算的活立木部分。许多森林都有自然扰动机制,但气候变化和人类活动会扰乱扰动的频率和严重程度,从而可能对森林碳的长期稳定性造成影响。为了最大限度地减少负面影响,最大限度地提高森林碳的恢复能力,必须在碳补偿协议、碳管理实践以及碳绘图和建模技术中考虑干扰风险。这就需要对以下方面进行详细的绘图和建模:全美森林碳的数量和分布,希望有一天能达到全球范围;干扰的频率、严重程度和时间;干扰影响碳储存的机制;以及气候变化可能如何改变这些因素。有几种工具(如火灾蔓延模型、森林蓄积量估算模型和森林生长模拟器)可用于解决上述一个或多个问题,并有助于为管理策略提供信息,从而降低森林碳风险,保持森林碳的长期稳定性,并进一步探索挑战、不确定性和机遇,以评估森林作为森林碳储存(包括碳抵消)的可行机制的持续潜力和面临的威胁。越来越多的集体研究和技术改进推动了科学的发展,但我们强调并讨论了仍然存在的主要局限性、不确定性和差距。
{"title":"Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future","authors":"Alex W. Dye,&nbsp;Rachel M. Houtman,&nbsp;Peng Gao,&nbsp;William R. L. Anderegg,&nbsp;Christopher J. Fettig,&nbsp;Jeffrey A. Hicke,&nbsp;John B. Kim,&nbsp;Christopher J. Still,&nbsp;Kevin Young,&nbsp;Karin L. Riley","doi":"10.1186/s13021-024-00282-0","DOIUrl":"10.1186/s13021-024-00282-0","url":null,"abstract":"<div><p>In this review, we discuss current research on forest carbon risk from natural disturbance under climate change for the United States, with emphasis on advancements in analytical mapping and modeling tools that have potential to drive research for managing future long-term stability of forest carbon. As a natural mechanism for carbon storage, forests are a critical component of meeting climate mitigation strategies designed to combat anthropogenic emissions. Forests consist of long-lived organisms (trees) that can store carbon for centuries or more. However, trees have finite lifespans, and disturbances such as wildfire, insect and disease outbreaks, and drought can hasten tree mortality or reduce tree growth, thereby slowing carbon sequestration, driving carbon emissions, and reducing forest carbon storage in stable pools, particularly the live and standing dead portions that are counted in many carbon offset programs. Many forests have natural disturbance regimes, but climate change and human activities disrupt the frequency and severity of disturbances in ways that are likely to have consequences for the long-term stability of forest carbon. To minimize negative effects and maximize resilience of forest carbon, disturbance risks must be accounted for in carbon offset protocols, carbon management practices, and carbon mapping and modeling techniques. This requires detailed mapping and modeling of the quantities and distribution of forest carbon across the United States and hopefully one day globally; the frequency, severity, and timing of disturbances; the mechanisms by which disturbances affect carbon storage; and how climate change may alter each of these elements. Several tools (e.g. fire spread models, imputed forest inventory models, and forest growth simulators) exist to address one or more of the aforementioned items and can help inform management strategies that reduce forest carbon risk, maintain long-term stability of forest carbon, and further explore challenges, uncertainties, and opportunities for evaluating the continued potential of, and threats to, forests as viable mechanisms for forest carbon storage, including carbon offsets. A growing collective body of research and technological improvements have advanced the science, but we highlight and discuss key limitations, uncertainties, and gaps that remain.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00282-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accounting for carbon emissions in social water cycle system in nine provinces along the yellow river and analysis of influencing factors 沿黄九省社会水循环系统碳排放核算及影响因素分析
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-28 DOI: 10.1186/s13021-024-00280-2
Lanbo Cui, Fuqiang Wang, Honglu Zhang, Heng Zhao, Jiahao Shi

Background

Water resources is an essential factor to ensure the sustainable development of the society, but along with the utilization and treatment of water resources, a large amount of carbon emissions will be generated. The study of carbon emissions in social water cycle system is of great significance in promoting the achievement of carbon peaking and carbon neutrality. This study calculated the carbon emissions generated in social water cycle system in nine provinces along the Yellow River, used the Tapio decoupling model to analyze the decoupling relationship between water and carbon emissions, and constructed the STIRPAT expanded model to analyze the main influencing factors of carbon emissions.

Results

(1) The total carbon emissions of the nine provinces showed an increasing trend over time, with a growth rate of 25.13%. (2) The carbon emission intensity of water use (1.60kg/m3) and drainage (1.45kg/m3) system is higher, the carbon emission intensity of water supply (0.30kg/m3) and water withdrawal (0.56kg/m3) system is lower. (3) The relationship between water resources utilization and carbon emissions along the Yellow River is generally in a state of negative decoupling and coupling. (4) Energy structure and population growth are the main factors affecting carbon emissions in social water cycle system, while water supply quantity and water use system are secondary factors.

Conclusions

Water use system is the main body of carbon emissions in social water cycle system, and as the water consumption increases, the carbon emissions will continue to increase. In order to reduce carbon emissions and mitigate climate change, carbon emission factors should be incorporated into water resources management.

背景水资源是保障社会可持续发展的重要因素,但在水资源利用和处理的同时,也会产生大量的碳排放。研究社会水循环系统中的碳排放对促进实现碳峰值和碳中和具有重要意义。本研究计算了沿黄九省社会水循环系统产生的碳排放量,利用 Tapio 解耦模型分析了水与碳排放的解耦关系,并构建了 STIRPAT 扩展模型分析了碳排放的主要影响因素。结果(1)九省碳排放总量呈逐年上升趋势,增长率为 25.13%。(2)用水(1.60kg/m3)和排水(1.45kg/m3)系统的碳排放强度较高,供水(0.30kg/m3)和取水(0.56kg/m3)系统的碳排放强度较低。(3)沿黄水资源利用与碳排放的关系总体上处于负解耦状态。(4)能源结构和人口增长是影响社会水循环系统碳排放的主要因素,供水量和用水系统是次要因素。为了减少碳排放,减缓气候变化,应将碳排放因素纳入水资源管理。
{"title":"Accounting for carbon emissions in social water cycle system in nine provinces along the yellow river and analysis of influencing factors","authors":"Lanbo Cui,&nbsp;Fuqiang Wang,&nbsp;Honglu Zhang,&nbsp;Heng Zhao,&nbsp;Jiahao Shi","doi":"10.1186/s13021-024-00280-2","DOIUrl":"10.1186/s13021-024-00280-2","url":null,"abstract":"<div><h3>Background</h3><p>Water resources is an essential factor to ensure the sustainable development of the society, but along with the utilization and treatment of water resources, a large amount of carbon emissions will be generated. The study of carbon emissions in social water cycle system is of great significance in promoting the achievement of carbon peaking and carbon neutrality. This study calculated the carbon emissions generated in social water cycle system in nine provinces along the Yellow River, used the Tapio decoupling model to analyze the decoupling relationship between water and carbon emissions, and constructed the STIRPAT expanded model to analyze the main influencing factors of carbon emissions.</p><h3>Results</h3><p>(1) The total carbon emissions of the nine provinces showed an increasing trend over time, with a growth rate of 25.13%. (2) The carbon emission intensity of water use (1.60kg/m<sup>3</sup>) and drainage (1.45kg/m<sup>3</sup>) system is higher, the carbon emission intensity of water supply (0.30kg/m<sup>3</sup>) and water withdrawal (0.56kg/m<sup>3</sup>) system is lower. (3) The relationship between water resources utilization and carbon emissions along the Yellow River is generally in a state of negative decoupling and coupling. (4) Energy structure and population growth are the main factors affecting carbon emissions in social water cycle system, while water supply quantity and water use system are secondary factors.</p><h3>Conclusions</h3><p>Water use system is the main body of carbon emissions in social water cycle system, and as the water consumption increases, the carbon emissions will continue to increase. In order to reduce carbon emissions and mitigate climate change, carbon emission factors should be incorporated into water resources management.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00280-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification of biomass availability for wood harvesting and storage in the continental United States with a carbon cycle model 利用碳循环模型量化美国大陆用于木材采伐和储存的生物质可用性
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-28 DOI: 10.1186/s13021-024-00270-4
Henry Hausmann, Qixiang Cai, Ning Zeng

Background

Wood Harvesting and Storage (WHS) is a form of Biomass Carbon Removal and Storage (BiCRS) that utilizes a combined natural and engineered process to harvest woody biomass and put it into long term storage, most frequently in the form of subterranean burial. This paper aims to quantify the availability of woody biomass for the purposes of WHS in the continental United States using a carbon cycle modeling approach. Using a regional version of the VEGAS terrestrial carbon cycle model at 10 km resolution, this paper calculates the annual woody net primary production in the continental United States. It then applies a series of constraints to exclude woody biomass that is unavailable for WHS. These constraints include fine woody biomass, current land use, current wood utilization, land conservation, and topographical limitations. These results were then split into state by state and regional totals.

Results

In total, the model projects the continental United States could produce 1,274 MtCO2e (CO2 equivalent) worth of coarse woody biomass annually in a scenario with no anthropogenic land use or constraints. In a scenario with anthropogenic land use and constraints on wood availability, the model projects that 415 MtCO2e of coarse woody biomass is available for WHS annually. This is enough to offset 8.5% of the United States’ 2020 greenhouse gas emissions. Of this potential, 20 MtCO2e is from the Pacific region, 77 MtCO2e is from the Western Interior, 91 MtCO2e is from the Northeast region, and 228 MtCO2e is from the Southeast region.

Conclusion

There is enough coarse woody biomass available in the continental United States to make WHS a viable form of carbon removal and storage in the country. There is coarse woody biomass available across the continental United States. All four primary regions analyzed have enough coarse woody biomass available to justify investment in WHS projects.

背景木材采伐与封存(WHS)是生物质碳清除与封存(BiCRS)的一种形式,它利用自然与工程相结合的方法采伐木质生物质并将其长期封存,最常见的形式是地下埋藏。本文旨在利用碳循环建模方法,对美国大陆用于 WHS 的木质生物质可用性进行量化。本文使用分辨率为 10 千米的 VEGAS 陆地碳循环模型区域版,计算了美国大陆每年的木本净初级生产力。然后,它应用了一系列约束条件,以排除无法用于 WHS 的木质生物量。这些限制因素包括细木质生物量、当前土地利用、当前木材利用、土地保护和地形限制。结果该模型预测,在没有人为土地使用或限制的情况下,美国大陆每年可生产价值 12.74 亿吨 CO2(二氧化碳当量)的粗木质生物质。在人为使用土地并限制木材供应的情况下,该模型预测每年可用于 WHS 的粗木质生物量为 4.15 亿吨 CO2e。这足以抵消美国 2020 年 8.5% 的温室气体排放量。在这一潜力中,太平洋地区为 2,000 万吨 CO2e,西部内陆地区为 7,700 万吨 CO2e,东北部地区为 9,100 万吨 CO2e,东南部地区为 2.28 亿吨 CO2e。美国大陆各地都有粗木质生物量。所分析的四个主要地区都有足够的粗木质生物量,足以证明对 WHS 项目的投资是合理的。
{"title":"Quantification of biomass availability for wood harvesting and storage in the continental United States with a carbon cycle model","authors":"Henry Hausmann,&nbsp;Qixiang Cai,&nbsp;Ning Zeng","doi":"10.1186/s13021-024-00270-4","DOIUrl":"10.1186/s13021-024-00270-4","url":null,"abstract":"<div><h3>Background</h3><p>Wood Harvesting and Storage (WHS) is a form of Biomass Carbon Removal and Storage (BiCRS) that utilizes a combined natural and engineered process to harvest woody biomass and put it into long term storage, most frequently in the form of subterranean burial. This paper aims to quantify the availability of woody biomass for the purposes of WHS in the continental United States using a carbon cycle modeling approach. Using a regional version of the VEGAS terrestrial carbon cycle model at 10 km resolution, this paper calculates the annual woody net primary production in the continental United States. It then applies a series of constraints to exclude woody biomass that is unavailable for WHS. These constraints include fine woody biomass, current land use, current wood utilization, land conservation, and topographical limitations. These results were then split into state by state and regional totals.</p><h3>Results</h3><p>In total, the model projects the continental United States could produce 1,274 MtCO<sub>2</sub>e (CO<sub>2</sub> equivalent) worth of coarse woody biomass annually in a scenario with no anthropogenic land use or constraints. In a scenario with anthropogenic land use and constraints on wood availability, the model projects that 415 MtCO<sub>2</sub>e of coarse woody biomass is available for WHS annually. This is enough to offset 8.5% of the United States’ 2020 greenhouse gas emissions. Of this potential, 20 MtCO<sub>2</sub>e is from the Pacific region, 77 MtCO<sub>2</sub>e is from the Western Interior, 91 MtCO<sub>2</sub>e is from the Northeast region, and 228 MtCO<sub>2</sub>e is from the Southeast region.</p><h3>Conclusion</h3><p>There is enough coarse woody biomass available in the continental United States to make WHS a viable form of carbon removal and storage in the country. There is coarse woody biomass available across the continental United States. All four primary regions analyzed have enough coarse woody biomass available to justify investment in WHS projects.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00270-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes in the net primary production of ecosystems across Western Europe from 2015 to 2022 in response to historic drought events 2015 年至 2022 年西欧生态系统净初级生产力随历史干旱事件而发生的变化
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-18 DOI: 10.1186/s13021-024-00279-9
Christopher Potter, Stephanie Pass

Background

Ecosystem models are valuable tools to make climate-related assessments of change when ground-based measurements of water and carbon fluxes are not adequately detailed to realistically capture geographic variability. The Carnegie-Ames-Stanford Approach (CASA) is one such model based on satellite observations of monthly vegetation cover to estimate net primary production (NPP) of terrestrial ecosystems.

Results

CASA model predictions from 2015 to 2022 for Western Europe revealed several notable high and low periods in growing season NPP totals in most countries of the region. For the total land coverage of France, Greece, Italy, Portugal, and Spain, 2018 was the year with the highest terrestrial plant growth, whereas 2017 and 2019 were the years with the highest summed NPP across the UK, Germany, and Croatia. For most of Western Europe, 2022 was the year predicted with the lowest summed plant growth. Annual precipitation in most countries of Western Europe gradually declined from a high average rate in 2018 to a low average precipitation level in 2022.

Conclusions

The CASA model predicted decreased growing season NPP of between − 25 and − 60% across all of Spain, southern France, and northern Italy from 2021 to 2022, and much of that plant production loss was detected in the important cropland regions of these nations.

背景当基于地面的水和碳通量测量不够详细,无法真实地捕捉地理变异性时,生态系统模型是进行气候相关变化评估的重要工具。卡内基-阿梅斯-斯坦福方法(CASA)就是这样一种基于每月植被覆盖的卫星观测数据来估算陆地生态系统净初级生产力(NPP)的模型。就法国、希腊、意大利、葡萄牙和西班牙的陆地总覆盖率而言,2018 年是陆地植物生长量最高的一年,而 2017 年和 2019 年则是英国、德国和克罗地亚的净生产力总和最高的一年。对于西欧大部分国家来说,2022 年是预测植物生长总和最低的一年。西欧大多数国家的年降水量从 2018 年的高平均降水量逐渐下降到 2022 年的低平均降水量水平。结论根据 CASA 模型预测,从 2021 年到 2022 年,西班牙全境、法国南部和意大利北部的生长季节净生产力将下降 - 25% 到 - 60%,其中大部分植物产量损失都出现在这些国家的重要耕地地区。
{"title":"Changes in the net primary production of ecosystems across Western Europe from 2015 to 2022 in response to historic drought events","authors":"Christopher Potter,&nbsp;Stephanie Pass","doi":"10.1186/s13021-024-00279-9","DOIUrl":"10.1186/s13021-024-00279-9","url":null,"abstract":"<div><h3>Background</h3><p>Ecosystem models are valuable tools to make climate-related assessments of change when ground-based measurements of water and carbon fluxes are not adequately detailed to realistically capture geographic variability. The Carnegie-Ames-Stanford Approach (CASA) is one such model based on satellite observations of monthly vegetation cover to estimate net primary production (NPP) of terrestrial ecosystems.</p><h3>Results</h3><p>CASA model predictions from 2015 to 2022 for Western Europe revealed several notable high and low periods in growing season NPP totals in most countries of the region. For the total land coverage of France, Greece, Italy, Portugal, and Spain, 2018 was the year with the highest terrestrial plant growth, whereas 2017 and 2019 were the years with the highest summed NPP across the UK, Germany, and Croatia. For most of Western Europe, 2022 was the year predicted with the lowest summed plant growth. Annual precipitation in most countries of Western Europe gradually declined from a high average rate in 2018 to a low average precipitation level in 2022.</p><h3>Conclusions</h3><p>The CASA model predicted decreased growing season NPP of between − 25 and − 60% across all of Spain, southern France, and northern Italy from 2021 to 2022, and much of that plant production loss was detected in the important cropland regions of these nations.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00279-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving soil carbon estimates of Philippine mangroves using localized organic matter to organic carbon equations 利用本地化有机质-有机碳方程改进菲律宾红树林土壤碳估算
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-11 DOI: 10.1186/s13021-024-00276-y
Severino G. Salmo III, Sean Paul B. Manalo, Precious B. Jacob, Maria Elisa B. Gerona-Daga, Camila Frances P. Naputo, Mareah Wayne A. Maramag, Mohammad Basyuni, Frida Sidik, Richard MacKenzie

Background

Southeast Asian (SEA) mangroves are globally recognized as blue carbon hotspots. Methodologies that measure mangrove soil carbon stock (SCS) are either accurate but costly (i.e., elemental analyzers), or economical but less accurate (i.e., loss-on-ignition [LOI]). Most SEA countries estimate SCS by measuring soil organic matter (OM) through the LOI method then converting it into organic carbon (OC) using a conventional conversion equation (%Corg = 0.415 * % LOI + 2.89, R2 = 0.59, n = 78) developed from Palau mangroves. The local site conditions in Palau does not reflect the wide range of environmental settings and disturbances in the Philippines. Consequently, the conventional conversion equation possibly compounds the inaccuracies of converting OM to OC causing over- or under-estimated SCS. Here, we generated a localized OM-OC conversion equation and tested its accuracy in computing SCS against the conventional equation. The localized equation was generated by plotting % OC (from elemental analyzer) against the % OM (from LOI). The study was conducted in different mangrove stands (natural, restored, and mangrove-recolonized fishponds) in Oriental Mindoro and Sorsogon, Philippines from the West and North Philippine Sea biogeographic regions, respectively. The OM:OC ratios were also statistically tested based on (a) stand types, (b) among natural stands, and (c) across different ages of the restored and recolonized stands. Increasing the accuracy of OM-OC conversion equations will improve SCS estimates that will yield reasonable C emission reduction targets for the country’s commitments on Nationally Determined Contributions (NDC) under the Paris Agreement.

Results

The localized conversion equation is %OC = 0.36 * % LOI + 2.40 (R2 = 0.67; n = 458). The SOM:OC ratios showed significant differences based on stand types (x2 = 19.24; P = 6.63 × 10–05), among natural stands (F = 23.22; p = 1.17 × 10–08), and among ages of restored (F = 5.14; P = 0.03) and recolonized stands (F = 3.4; P = 0.02). SCS estimates using the localized (5%) and stand-specific equations (7%) were similar with the values derived from an elemental analyzer. In contrast, the conventional equation overestimates SCS by 20%.

Conclusions

The calculated SCS improves as the conversion equation becomes more reflective of localized site conditions. Both localized and stand-specific conversion equations yielded more accurate SCS compared to the conventional equation. While our study explored only two out of the six marine biogeographic regions in the Philippines, we proved that having a localized conversion equation leads to improved SCS measurements. Using our proposed equations will make more realistic SCS targets (and therefore GHG reductions) in designing mangrove restoration programs to achieve the country’s NDC commitments.

背景东南亚(SEA)红树林是全球公认的蓝碳热点。测量红树林土壤碳储量(SCS)的方法要么精确但昂贵(如元素分析仪),要么经济但不太精确(如点火损失法[LOI])。大多数东南亚国家通过 LOI 法测量土壤有机质 (OM),然后使用帕劳红树林开发的传统转换方程 (%Corg = 0.415 * % LOI + 2.89, R2 = 0.59, n = 78) 将其转换为有机碳 (OC),从而估算 SCS。帕劳当地的现场条件并不能反映菲律宾广泛的环境背景和干扰。因此,传统的转换方程可能会加剧将 OM 转换为 OC 的不准确性,导致 SCS 估值过高或过低。在此,我们生成了一个本地化的 OM-OC 转换方程,并对照传统方程测试了其计算 SCS 的准确性。通过绘制 OC%(来自元素分析仪)与 OM%(来自 LOI)的对比图,生成了本地化方程。该研究分别在菲律宾西菲律宾海和北菲律宾海生物地理区域的东民都洛岛和朔尔索贡岛的不同红树林(自然红树林、恢复红树林和红树林复育鱼塘)中进行。OM:OC 比率还根据(a)林分类型、(b)自然林分之间以及(c)恢复和重新定居林分的不同年龄进行了统计测试。提高 OM-OC 转换方程的准确性将改善 SCS 估算值,从而为该国在《巴黎协定》下所做的国家确定贡献(NDC)承诺提供合理的碳减排目标。SOM:OC 比值在不同林分类型(x2 = 19.24;P = 6.63 × 10-05)、不同自然林分(F = 23.22;P = 1.17 × 10-08)、不同树龄的恢复林分(F = 5.14;P = 0.03)和再植林分(F = 3.4;P = 0.02)之间存在显著差异。使用局部方程(5%)和特定林分方程(7%)得出的 SCS 估计值与元素分析仪得出的值相似。相比之下,传统方程高估了 20% 的 SCS。与传统方程相比,本地化和针对具体地点的转换方程都能产生更准确的 SCS。虽然我们的研究只探索了菲律宾六个海洋生物地理区域中的两个,但我们证明,采用本地化转换方程可以改进 SCS 测量结果。在设计红树林恢复计划以实现国家的 NDC 承诺时,使用我们提出的等式将使 SCS 目标(以及温室气体减排量)更切合实际。
{"title":"Improving soil carbon estimates of Philippine mangroves using localized organic matter to organic carbon equations","authors":"Severino G. Salmo III,&nbsp;Sean Paul B. Manalo,&nbsp;Precious B. Jacob,&nbsp;Maria Elisa B. Gerona-Daga,&nbsp;Camila Frances P. Naputo,&nbsp;Mareah Wayne A. Maramag,&nbsp;Mohammad Basyuni,&nbsp;Frida Sidik,&nbsp;Richard MacKenzie","doi":"10.1186/s13021-024-00276-y","DOIUrl":"10.1186/s13021-024-00276-y","url":null,"abstract":"<div><h3>Background</h3><p>Southeast Asian (SEA) mangroves are globally recognized as blue carbon hotspots. Methodologies that measure mangrove soil carbon stock (SCS) are either accurate but costly (i.e., elemental analyzers), or economical but less accurate (i.e., loss-on-ignition [LOI]). Most SEA countries estimate SCS by measuring soil organic matter (OM) through the LOI method then converting it into organic carbon (OC) using a conventional conversion equation (%C<sub>org</sub> = 0.415 * % LOI + 2.89, R<sup>2</sup> = 0.59, n = 78) developed from Palau mangroves. The local site conditions in Palau does not reflect the wide range of environmental settings and disturbances in the Philippines. Consequently, the conventional conversion equation possibly compounds the inaccuracies of converting OM to OC causing over- or under-estimated SCS. Here, we generated a localized OM-OC conversion equation and tested its accuracy in computing SCS against the conventional equation. The localized equation was generated by plotting % OC (from elemental analyzer) against the % OM (from LOI). The study was conducted in different mangrove stands (natural, restored, and mangrove-recolonized fishponds) in Oriental Mindoro and Sorsogon, Philippines from the West and North Philippine Sea biogeographic regions, respectively. The OM:OC ratios were also statistically tested based on (a) stand types, (b) among natural stands, and (c) across different ages of the restored and recolonized stands. Increasing the accuracy of OM-OC conversion equations will improve SCS estimates that will yield reasonable C emission reduction targets for the country’s commitments on Nationally Determined Contributions (NDC) under the Paris Agreement.</p><h3>Results</h3><p>The localized conversion equation is %OC = 0.36 * % LOI + 2.40 (R<sup>2</sup> = 0.67; n = 458). The SOM:OC ratios showed significant differences based on stand types (<i>x</i><sup>2</sup> = 19.24; P = 6.63 × 10<sup>–05</sup>), among natural stands (F = 23.22; p = 1.17 × 10<sup>–08</sup>), and among ages of restored (F = 5.14; P = 0.03) and recolonized stands (F = 3.4; P = 0.02). SCS estimates using the localized (5%) and stand-specific equations (7%) were similar with the values derived from an elemental analyzer. In contrast, the conventional equation overestimates SCS by 20%.</p><h3>Conclusions</h3><p>The calculated SCS improves as the conversion equation becomes more reflective of localized site conditions. Both localized and stand-specific conversion equations yielded more accurate SCS compared to the conventional equation. While our study explored only two out of the six marine biogeographic regions in the Philippines, we proved that having a localized conversion equation leads to improved SCS measurements. Using our proposed equations will make more realistic SCS targets (and therefore GHG reductions) in designing mangrove restoration programs to achieve the country’s NDC commitments.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00276-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the role of canopy cover and environmental factors in shaping carbon storage in Desa’a forest, Ethiopia 探索树冠覆盖和环境因素在影响埃塞俄比亚 Desa'a 森林碳储存中的作用。
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-09 DOI: 10.1186/s13021-024-00277-x
Negasi Solomon, Emiru Birhane, Mulley Teklay, Aklilu Negussie, Tesfay Gidey

Background

Dry Afromontane forests play a vital role in mitigating climate change by sequestering and storing carbon, as well as reducing greenhouse gas emissions. Despite previous research highlighting the importance of carbon stocks in these ecosystems, the influence of canopy cover and environmental factors on carbon storage in dry Afromontane forests has been barely assessed. This study addresses this knowledge gap by investigating the effects of environmental factors and vegetation cover on carbon stocks in Desa’a forest, a unique and threatened Afromontane dry forest ecosystem in northern Ethiopia. Data on woody vegetation, dead litter, grass biomass, and soil samples were collected from 57 plots. A one-way analysis of variance (ANOVA) was performed at a 95% confidence level (α = 0.05) to examine the influence of canopy cover and environmental factors on the carbon stocks of various pools.

Results

Among the 35 woody species identified, Juniperus procera was the most dominant, while Carissa edulis Vahl and Eucalyptus globulus were the least dominant. The average total carbon stock was 92.89 Mg ha−1, with contributions from aboveground carbon, below-ground carbon, litter carbon, grass carbon, and soil organic carbon. Among the carbon pools, soil organic carbon had the highest carbon stock, accounting for 76.8% of the total, followed by above-ground biomass carbon at 17.7%. Significant variations in carbon stocks were found across altitude class and canopy level but not slope and aspect factors.

Conclusions

In summary, altitude and canopy level were found to significantly influence carbon stocks in Desa’a forest, providing valuable insights for conservation and climate change mitigation efforts in dry Afromontane forests. Forest intervention planning and management strategies should consider the influence of different environmental variables and tree canopy levels.

背景:非洲旱地森林通过固碳和储碳以及减少温室气体排放,在减缓气候变化方面发挥着至关重要的作用。尽管以前的研究强调了碳储量在这些生态系统中的重要性,但几乎没有评估过树冠覆盖和环境因素对非洲干森林碳储量的影响。本研究针对这一知识空白,调查了环境因素和植被覆盖对埃塞俄比亚北部独特且濒临灭绝的非蒙干旱森林生态系统 Desa'a 森林碳储量的影响。研究收集了 57 个地块的木本植被、枯落物、草地生物量和土壤样本数据。在 95% 的置信水平(α = 0.05)下进行了单因素方差分析(ANOVA),以检验树冠覆盖和环境因素对不同碳库碳储量的影响:结果:在已鉴定的 35 个木本物种中,刺柏(Juniperus procera)的优势度最高,而桉树(Carissa edulis Vahl)和球桉(Eucalyptus globulus)的优势度最低。平均总碳储量为 92.89 兆克/公顷-1,包括地上碳、地下碳、枯落物碳、草碳和土壤有机碳。在各碳库中,土壤有机碳的碳储量最高,占总碳量的 76.8%,其次是地上生物质碳,占 17.7%。不同海拔高度和树冠层的碳储量存在显著差异,但坡度和坡向因子不存在显著差异:总之,研究发现海拔高度和树冠层对 Desa'a 森林的碳储量有显著影响,为非洲干旱半干旱森林的保护和气候变化减缓工作提供了有价值的见解。森林干预规划和管理策略应考虑不同环境变量和树冠层的影响。
{"title":"Exploring the role of canopy cover and environmental factors in shaping carbon storage in Desa’a forest, Ethiopia","authors":"Negasi Solomon,&nbsp;Emiru Birhane,&nbsp;Mulley Teklay,&nbsp;Aklilu Negussie,&nbsp;Tesfay Gidey","doi":"10.1186/s13021-024-00277-x","DOIUrl":"10.1186/s13021-024-00277-x","url":null,"abstract":"<div><h3>Background</h3><p>Dry Afromontane forests play a vital role in mitigating climate change by sequestering and storing carbon, as well as reducing greenhouse gas emissions. Despite previous research highlighting the importance of carbon stocks in these ecosystems, the influence of canopy cover and environmental factors on carbon storage in dry Afromontane forests has been barely assessed. This study addresses this knowledge gap by investigating the effects of environmental factors and vegetation cover on carbon stocks in Desa’a forest, a unique and threatened Afromontane dry forest ecosystem in northern Ethiopia. Data on woody vegetation, dead litter, grass biomass, and soil samples were collected from 57 plots. A one-way analysis of variance (ANOVA) was performed at a 95% confidence level (α = 0.05) to examine the influence of canopy cover and environmental factors on the carbon stocks of various pools.</p><h3>Results</h3><p>Among the 35 woody species identified, <i>Juniperus procera</i> was the most dominant, while <i>Carissa edulis</i> Vahl and <i>Eucalyptus globulus</i> were the least dominant. The average total carbon stock was 92.89 Mg ha<sup>−1</sup>, with contributions from aboveground carbon, below-ground carbon, litter carbon, grass carbon, and soil organic carbon. Among the carbon pools, soil organic carbon had the highest carbon stock, accounting for 76.8% of the total, followed by above-ground biomass carbon at 17.7%. Significant variations in carbon stocks were found across altitude class and canopy level but not slope and aspect factors.</p><h3>Conclusions</h3><p>In summary, altitude and canopy level were found to significantly influence carbon stocks in Desa’a forest, providing valuable insights for conservation and climate change mitigation efforts in dry Afromontane forests. Forest intervention planning and management strategies should consider the influence of different environmental variables and tree canopy levels.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00277-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Carbon Balance and Management
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1