Pub Date : 2025-03-13DOI: 10.1186/s13021-025-00291-7
Eric C. Davis, Maros Ivanic, Brent Sohngen
The projected growth in population and incomes is expected to create pressure to convert forestland into farmland. At the same time, the increasingly negative climate impacts are expected to generate further pressure to enhance the terrestrial carbon sink. Even though these goals are incompatible as reversing the deforestation trend by afforesting cropland would result in negative market impacts such as higher food prices, using the GTAP and GTM models, we find that these impacts would be relatively small if the goal of preserving 144.2 million hectares of forestland that otherwise would be converted to agricultural land by 2033 is achieved through a tax on land use in agricultural production. As to the economic price for doing so, the avoided deforestation would in most regions of the world result in less agricultural output and higher market prices. This is estimated to impact the well-being of global consumers by $119.7 billion, which translates to a global average cost of $13.78 per person in 2033.
{"title":"Avoiding global deforestation by taxing land in agricultural production: the implications for global markets","authors":"Eric C. Davis, Maros Ivanic, Brent Sohngen","doi":"10.1186/s13021-025-00291-7","DOIUrl":"10.1186/s13021-025-00291-7","url":null,"abstract":"<div><p>The projected growth in population and incomes is expected to create pressure to convert forestland into farmland. At the same time, the increasingly negative climate impacts are expected to generate further pressure to enhance the terrestrial carbon sink. Even though these goals are incompatible as reversing the deforestation trend by afforesting cropland would result in negative market impacts such as higher food prices, using the GTAP and GTM models, we find that these impacts would be relatively small if the goal of preserving 144.2 million hectares of forestland that otherwise would be converted to agricultural land by 2033 is achieved through a tax on land use in agricultural production. As to the economic price for doing so, the avoided deforestation would in most regions of the world result in less agricultural output and higher market prices. This is estimated to impact the well-being of global consumers by $119.7 billion, which translates to a global average cost of $13.78 per person in 2033.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"20 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-025-00291-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143612327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-10DOI: 10.1186/s13021-025-00292-6
Alice Favero, Justin Baker, Brent Sohngen, Adam Daigneault, Christopher Wade, Sara Ohrel, Shaun Ragnauth
In recent years several U.S. federal policies have been adopted to support forest-based climate mitigation actions. This study focuses on current federal funds allocated to forest for climate change mitigation activities to assess how much they could deliver in terms of net sequestration under a best-case (optimized) scenario where the cheapest abatement options are implemented first and if these funds are in line to achieve domestic targets for 2030 and 2050. Multiple investments pathways are tested under two different assumptions on CO2 fertilization to provide a range of future mitigation projections from forests. Results show that under annual investments in line with current federal funds (around $640 million), the expected net carbon flux of U.S. forests is around 745 MtCO2/yr in 2030 (+ 12% increase from baseline) and if the investments expand after 2030 the net flux is expected to be 786 MtCO2/yr in 2050 (+ 17% increase from baseline). When CO2 fertilization is accounted for, the projections of net forest carbon sequestration increase by 17% in 2030 and about 1 GtCO2 net sequestration achieved under federal funds in 2050, increasing the likelihood of meeting both short-term and long-term domestic targets.
{"title":"Investing in U.S. forests to mitigate climate change","authors":"Alice Favero, Justin Baker, Brent Sohngen, Adam Daigneault, Christopher Wade, Sara Ohrel, Shaun Ragnauth","doi":"10.1186/s13021-025-00292-6","DOIUrl":"10.1186/s13021-025-00292-6","url":null,"abstract":"<div><p>In recent years several U.S. federal policies have been adopted to support forest-based climate mitigation actions. This study focuses on current federal funds allocated to forest for climate change mitigation activities to assess how much they could deliver in terms of net sequestration under a best-case (optimized) scenario where the cheapest abatement options are implemented first and if these funds are in line to achieve domestic targets for 2030 and 2050. Multiple investments pathways are tested under two different assumptions on CO<sub>2</sub> fertilization to provide a range of future mitigation projections from forests. Results show that under annual investments in line with current federal funds (around $640 million), the expected net carbon flux of U.S. forests is around 745 MtCO<sub>2</sub>/yr in 2030 (+ 12% increase from baseline) and if the investments expand after 2030 the net flux is expected to be 786 MtCO<sub>2</sub>/yr in 2050 (+ 17% increase from baseline). When CO<sub>2</sub> fertilization is accounted for, the projections of net forest carbon sequestration increase by 17% in 2030 and about 1 GtCO<sub>2</sub> net sequestration achieved under federal funds in 2050, increasing the likelihood of meeting both short-term and long-term domestic targets.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"20 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-025-00292-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143583656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-17DOI: 10.1186/s13021-024-00288-8
Mohammad Kamrul Hasan, Nasima Akther Roshni, Rojina Akter
Background
Cropland agroforestry practices are widely adopted over various land ecosystems in Bangladesh, offering the potential to capture carbon (C) and safeguard biodiversity. Lack of accurate assessments of biomass carbon and the diversity of woody perennials in cropland agroforestry practices across different land ecosystems presents a hurdle for the efficient execution of initiatives such as REDD + and comparable mechanisms. The present research sought to estimate biomass carbon stocks and diversity of woody species, exploring the influence of stand structure and diversity indices on these C stocks. We conducted woody perennials’ inventory in 180 sampling quadrates (10 m × 10 m) from cropland agroforestry practices in forest, plains land, and char land ecosystems.
Results
Altogether, we identified 42 woody species; however, the predominant species in three land ecosystems were Acacia auriculiformis, Gmelina arborea, and Tectona grandis. Swietenia macrophylla and Swietenia mahogany contributed the greatest amount of carbon stocks. Carbon stocks in woody perennials were 30–44% higher in plains land and forest land ecosystems compared to the char land ecosystem, attributable to significantly increased stand density, basal area and diameter. The significantly highest Shannon–Wiener index (2.75) and Margalef’s richness index (3.37) were found in forest land compared to other ecosystems. The highest total carbon stocks (131.27 Mg C ha−1) of cropland agroforestry were found in the forest land ecosystem, which had the greatest soil organic carbon, density, and richness of woody perennials. A rise in the richness and diversity index of woody species by one unit led to a concurrent increase of 12 and 8 Mg C ha−1 in carbon stocks, respectively.
Conclusions
Cropland agroforestry practices in the forest land ecosystem are more diverse and could sequester more carbon stock than in the other two land ecosystems in Bangladesh. The biomass C stocks of woody species were positively correlated with stand structure and diversity, having the potential to contribute to biodiversity conservation in Bangladesh and other similar countries.
{"title":"Estimating carbon stocks and woody perennials diversity in cropland agroforestry on three different land ecosystems in Bangladesh","authors":"Mohammad Kamrul Hasan, Nasima Akther Roshni, Rojina Akter","doi":"10.1186/s13021-024-00288-8","DOIUrl":"10.1186/s13021-024-00288-8","url":null,"abstract":"<div><h3>Background</h3><p>Cropland agroforestry practices are widely adopted over various land ecosystems in Bangladesh, offering the potential to capture carbon (C) and safeguard biodiversity. Lack of accurate assessments of biomass carbon and the diversity of woody perennials in cropland agroforestry practices across different land ecosystems presents a hurdle for the efficient execution of initiatives such as REDD + and comparable mechanisms. The present research sought to estimate biomass carbon stocks and diversity of woody species, exploring the influence of stand structure and diversity indices on these C stocks. We conducted woody perennials’ inventory in 180 sampling quadrates (10 m × 10 m) from cropland agroforestry practices in forest, plains land, and char land ecosystems.</p><h3>Results</h3><p>Altogether, we identified 42 woody species; however, the predominant species in three land ecosystems were <i>Acacia auriculiformis, Gmelina arborea, and Tectona grandis. Swietenia macrophylla and Swietenia mahogany</i> contributed the greatest amount of carbon stocks. Carbon stocks in woody perennials were 30–44% higher in plains land and forest land ecosystems compared to the char land ecosystem, attributable to significantly increased stand density, basal area and diameter. The significantly highest Shannon–Wiener index (2.75) and Margalef’s richness index (3.37) were found in forest land compared to other ecosystems. The highest total carbon stocks (131.27 Mg C ha<sup>−1</sup>) of cropland agroforestry were found in the forest land ecosystem, which had the greatest soil organic carbon, density, and richness of woody perennials. A rise in the richness and diversity index of woody species by one unit led to a concurrent increase of 12 and 8 Mg C ha<sup>−1</sup> in carbon stocks, respectively.</p><h3>Conclusions</h3><p>Cropland agroforestry practices in the forest land ecosystem are more diverse and could sequester more carbon stock than in the other two land ecosystems in Bangladesh. The biomass C stocks of woody species were positively correlated with stand structure and diversity, having the potential to contribute to biodiversity conservation in Bangladesh and other similar countries.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"20 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00288-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.1186/s13021-024-00290-0
Madisen R. Fuller, Manaswini Ganjam, Justin S. Baker, Robert C. Abt
Forests have the potential to contribute significantly to global climate policy efforts through enhanced carbon sequestration and storage in terrestrial systems and wood products. Projections models simulate changes future in forest carbon fluxes under different environmental, economic, and policy conditions and can inform landowners and policymakers on how to best utilize global forests for mitigating climate change. However, forest carbon modeling frameworks are often developed and applied in a highly disciplinary manner, e.g., with ecological and economic modeling communities typically operating in silos or through soft model linkages through input–output parametric relationships. Recent disciplinary divides between economic and ecological research communities confound policy guidance on levers to increase forest carbon sinks and enhance ecosystem resilience to global change. This paper reviews and summarizes the expansive literature on forest carbon modeling within economic and ecological disciplines, discusses the benefits and limitations of commonly used models, and proposes a convergence approach to better integrating ecological and economic systems frameworks. More specifically, we highlight the critical feedback loops that exist when economic and ecological carbon models operate independently and discuss the benefits of a more integrated approach. We then describe an iterative approach that involves the sharing of methodology, perspectives, and data between the regimented model types. An integrated approach can reduce the limitations or disciplinary bias of forest carbon models by exploiting and merging their relative strengths.
{"title":"Advancing forest carbon projections requires improved convergence between ecological and economic models","authors":"Madisen R. Fuller, Manaswini Ganjam, Justin S. Baker, Robert C. Abt","doi":"10.1186/s13021-024-00290-0","DOIUrl":"10.1186/s13021-024-00290-0","url":null,"abstract":"<div><p>Forests have the potential to contribute significantly to global climate policy efforts through enhanced carbon sequestration and storage in terrestrial systems and wood products. Projections models simulate changes future in forest carbon fluxes under different environmental, economic, and policy conditions and can inform landowners and policymakers on how to best utilize global forests for mitigating climate change. However, forest carbon modeling frameworks are often developed and applied in a highly disciplinary manner, e.g., with ecological and economic modeling communities typically operating in silos or through soft model linkages through input–output parametric relationships. Recent disciplinary divides between economic and ecological research communities confound policy guidance on levers to increase forest carbon sinks and enhance ecosystem resilience to global change. This paper reviews and summarizes the expansive literature on forest carbon modeling within economic and ecological disciplines, discusses the benefits and limitations of commonly used models, and proposes a convergence approach to better integrating ecological and economic systems frameworks. More specifically, we highlight the critical feedback loops that exist when economic and ecological carbon models operate independently and discuss the benefits of a more integrated approach. We then describe an iterative approach that involves the sharing of methodology, perspectives, and data between the regimented model types. An integrated approach can reduce the limitations or disciplinary bias of forest carbon models by exploiting and merging their relative strengths.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"20 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00290-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Territorial pattern plays an important role in regional ecosystem management and service provision. It is significant to demonstrate the coordination relationships between the territorial space evolutions and ecosystem services for sustainable regional development. This study focused on quantifying the impacts of production-living-ecological space change on carbon sequestration and water yield in the upper and middle-lower reaches of the Yangtze River Basin. Our results indicated that the production-living-ecological space variation trends are similar between the upper and middle-lower reaches during 2000–2020, while their impacts on ecosystem services are different in their respective regions. In the upper reaches, the changes in production and ecological space had a direct positive impact on NPP while the changes of living space had a negative impact on the NPP. However, the changes of production-living-ecological space had no significant effects on the water yield. In contrast, the changes of production and ecological space had no significant effect on the NPP in the middle-lower reaches, while the changes of ecological space had a positive effect on the water yield. Additionally, we also found that social-economic factors had no significant effects on the changes of ecological space in the middle-lower reaches of the Basin. We suggested that policy makers need to optimize the distribution of territorial space in order to maintain sustainable development.
{"title":"Integrating territorial pattern changes into the relationship between carbon sequestration and water yield in the Yangtze River Basin, China","authors":"Zelin Liu, Xiaoting Yu, Cong Liu, Ziying Zou, Changhui Peng, Peng Li, Jiayi Tang, Haoyun Liu, Yihang Zhu, Chunbo Huang","doi":"10.1186/s13021-024-00289-7","DOIUrl":"10.1186/s13021-024-00289-7","url":null,"abstract":"<div><p>Territorial pattern plays an important role in regional ecosystem management and service provision. It is significant to demonstrate the coordination relationships between the territorial space evolutions and ecosystem services for sustainable regional development. This study focused on quantifying the impacts of production-living-ecological space change on carbon sequestration and water yield in the upper and middle-lower reaches of the Yangtze River Basin. Our results indicated that the production-living-ecological space variation trends are similar between the upper and middle-lower reaches during 2000–2020, while their impacts on ecosystem services are different in their respective regions. In the upper reaches, the changes in production and ecological space had a direct positive impact on NPP while the changes of living space had a negative impact on the NPP. However, the changes of production-living-ecological space had no significant effects on the water yield. In contrast, the changes of production and ecological space had no significant effect on the NPP in the middle-lower reaches, while the changes of ecological space had a positive effect on the water yield. Additionally, we also found that social-economic factors had no significant effects on the changes of ecological space in the middle-lower reaches of the Basin. We suggested that policy makers need to optimize the distribution of territorial space in order to maintain sustainable development.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"20 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00289-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-20DOI: 10.1186/s13021-024-00286-w
Sara Winsemius, Chad Babcock, Van R. Kane, Kat J. Bormann, Hugh D. Safford, Yufang Jin
Background
Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass.
Results
We estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data.
Conclusions
By applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets.
{"title":"Improved aboveground biomass estimation and regional assessment with aerial lidar in California’s subalpine forests","authors":"Sara Winsemius, Chad Babcock, Van R. Kane, Kat J. Bormann, Hugh D. Safford, Yufang Jin","doi":"10.1186/s13021-024-00286-w","DOIUrl":"10.1186/s13021-024-00286-w","url":null,"abstract":"<div><h3>Background</h3><p>Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass.</p><h3>Results</h3><p>We estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data.</p><h3>Conclusions</h3><p>By applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00286-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.1186/s13021-024-00287-9
David N. Wear, Matthew Wibbenmeyer
Background
Carbon dioxide removal from the atmosphere (CDR) is a critical component of strategies for restricting global warming to 1.5°C and is expected to come largely from the sequestration of carbon in vegetation. Because CDR rates have been declining in the United States, in part due to land use changes, policy proposals are focused on altering land uses, through afforestation, avoided deforestation, and no-net-loss strategies. Estimating policy effects requires a careful assessment of how land uses interact with forest conditions to determine future CDR.
Results
We evaluate how alternative specifications of land use-forest condition interactions in the United States affect projections of CDR using a model that mirrors land sector net emission inventories generated by the US government (EPA). Without land use change, CDR declines from 0.826 GT/yr in 2017 to 0.596 GT/yr in 2062 (28%) due to forest aging and disturbances. For a land use scenario that extends recent rates of change, we compare CDR estimated based on net changes in land use (Net Change model) and estimates that separately account for the distinct CDR implications of forest losses and forest gains (Component Change model). The Net Change model, a common specification, underestimates the CDR losses of land use by about 56% when compared with the Component Change models. We also estimate per hectare CDR losses from deforestation and gains from afforestation and find that afforestation gains lag deforestation losses in every ecological province in the US.
Conclusions
Net Change approaches substantially underestimate the impact of land use change on CDR and should be avoided. Component Change models highlight that avoided deforestation may provide up to twice the CDR benefits as increased afforestation—though preference for one policy over the other would require a cost assessment. The disparities in the CDR impacts of afforestation and deforestation indicate that no-net-loss policies could mitigate some CDR losses but would lead to overall declines in CDR for our 45-year time horizon. Over a much longer period afforestation could capture more of the losses from deforestation but at a timeframe inconsistent with most climate change policy efforts.
{"title":"Land-use change, no-net-loss policies, and effects on carbon dioxide removals","authors":"David N. Wear, Matthew Wibbenmeyer","doi":"10.1186/s13021-024-00287-9","DOIUrl":"10.1186/s13021-024-00287-9","url":null,"abstract":"<div><h3>Background</h3><p>Carbon dioxide removal from the atmosphere (CDR) is a critical component of strategies for restricting global warming to 1.5°C and is expected to come largely from the sequestration of carbon in vegetation. Because CDR rates have been declining in the United States, in part due to land use changes, policy proposals are focused on altering land uses, through afforestation, avoided deforestation, and no-net-loss strategies. Estimating policy effects requires a careful assessment of how land uses interact with forest conditions to determine future CDR.</p><h3>Results</h3><p>We evaluate how alternative specifications of land use-forest condition interactions in the United States affect projections of CDR using a model that mirrors land sector net emission inventories generated by the US government (EPA). Without land use change, CDR declines from 0.826 GT/yr in 2017 to 0.596 GT/yr in 2062 (28%) due to forest aging and disturbances. For a land use scenario that extends recent rates of change, we compare CDR estimated based on net changes in land use (Net Change model) and estimates that separately account for the distinct CDR implications of forest losses and forest gains (Component Change model). The Net Change model, a common specification, underestimates the CDR losses of land use by about 56% when compared with the Component Change models. We also estimate per hectare CDR losses from deforestation and gains from afforestation and find that afforestation gains lag deforestation losses in every ecological province in the US.</p><h3>Conclusions</h3><p>Net Change approaches substantially underestimate the impact of land use change on CDR and should be avoided. Component Change models highlight that avoided deforestation may provide up to twice the CDR benefits as increased afforestation—though preference for one policy over the other would require a cost assessment. The disparities in the CDR impacts of afforestation and deforestation indicate that no-net-loss policies could mitigate some CDR losses but would lead to overall declines in CDR for our 45-year time horizon. Over a much longer period afforestation could capture more of the losses from deforestation but at a timeframe inconsistent with most climate change policy efforts.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00287-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-30DOI: 10.1186/s13021-024-00285-x
Mingfang Tang, Yuejing Rong, Lifu Zheng, Yue Luo, Kai Li, Xin Fan
Background
Given the increasing commitment of numerous nations to achieving future carbon neutrality, urban development planning that integrating carbon storage considerations plays a crucial role in enhancing urban carbon efficiency and promoting regional sustainable development. Previous studies have indicated that optimizing land use structure and quality is essential for regional carbon storage management. Taking the core area of Taihu Bay as study area, this study innovatively combined high-precision urban 3D data to account for the whole urban carbon pools of buildings, vegetation, soils, water. Then, multi-objective linear programming model and PLUS (Patch-generating Land Use Simulation) model were applied at patch scale to assess and compare carbon storage in various scenarios, considering both carbon storage maximization and urban development requirements.
Results
The results were presented as follows. (1) Urban woodland carbon pool accounts for only a fraction of total carbon pool, and the role of soil and building carbon pools cannot be ignored. (2) Compared with the current situation, the carbon-growth optimized scenario will lead to the increase of total carbon storage by 38,568.31 tons. (3) Carbon-growth optimized scenario has reduced carbon storage in Woodland, Cropland, Village, Water compared to the Natural growth scenario, but has increased carbon storage in Garden plots, Street, Urban district, Town and other areas.
Conclusions
Therefore, we find that for fast-growing cities, rationally planning built-up areas and woodland areas can achieve the twin goals of economic development and maximizing regional carbon storage. Furthermore, the implementation of new energy policies and projects such as green roofs can help to achieve regional carbon neutrality. The study provides new insights into the accounting of carbon pools within cities and the simulation of fine-grained land use planning based on the dual objectives of carbon stock maximization and urban development.
鉴于许多国家对实现未来碳中和的承诺日益增加,整合碳储存考虑的城市发展规划对于提高城市碳效率和促进区域可持续发展具有至关重要的作用。已有研究表明,优化土地利用结构和质量对区域碳储量管理至关重要。本研究创新性地以太湖湾核心区为研究区域,结合高精度城市三维数据,对城市建筑、植被、土壤、水的整体碳库进行了综合考虑。然后,在斑块尺度下,应用多目标线性规划模型和PLUS (patch -generating Land Use Simulation,斑块生成土地利用模拟)模型,综合考虑碳储量最大化和城市发展需求,对不同情景下的碳储量进行评估和比较。结果结果如下:(1)城市林地碳库仅占总碳库的一小部分,土壤和建筑碳库的作用不容忽视。(2)与当前情景相比,碳增长优化情景将导致总碳储量增加38568.31 t。(3)与自然生长情景相比,林地、耕地、村庄、水体的碳储量均有所减少,而园林地块、街道、城区、城镇等区域的碳储量均有所增加。因此,我们发现对于快速发展的城市,合理规划建成区和林地可以实现经济发展和区域碳储量最大化的双重目标。此外,实施新的能源政策和项目,如绿色屋顶,可以帮助实现区域碳中和。该研究为城市碳库核算和基于碳储量最大化和城市发展双重目标的细粒度土地利用规划模拟提供了新的见解。
{"title":"Urban land use optimization prediction considering carbon neutral development goals: a case study of Taihu Bay Core area in China","authors":"Mingfang Tang, Yuejing Rong, Lifu Zheng, Yue Luo, Kai Li, Xin Fan","doi":"10.1186/s13021-024-00285-x","DOIUrl":"10.1186/s13021-024-00285-x","url":null,"abstract":"<div><h3>Background</h3><p>Given the increasing commitment of numerous nations to achieving future carbon neutrality, urban development planning that integrating carbon storage considerations plays a crucial role in enhancing urban carbon efficiency and promoting regional sustainable development. Previous studies have indicated that optimizing land use structure and quality is essential for regional carbon storage management. Taking the core area of Taihu Bay as study area, this study innovatively combined high-precision urban 3D data to account for the whole urban carbon pools of buildings, vegetation, soils, water. Then, multi-objective linear programming model and PLUS (Patch-generating Land Use Simulation) model were applied at patch scale to assess and compare carbon storage in various scenarios, considering both carbon storage maximization and urban development requirements.</p><h3>Results</h3><p>The results were presented as follows. (1) Urban woodland carbon pool accounts for only a fraction of total carbon pool, and the role of soil and building carbon pools cannot be ignored. (2) Compared with the current situation, the carbon-growth optimized scenario will lead to the increase of total carbon storage by 38,568.31 tons. (3) Carbon-growth optimized scenario has reduced carbon storage in Woodland, Cropland, Village, Water compared to the Natural growth scenario, but has increased carbon storage in Garden plots, Street, Urban district, Town and other areas.</p><h3>Conclusions</h3><p>Therefore, we find that for fast-growing cities, rationally planning built-up areas and woodland areas can achieve the twin goals of economic development and maximizing regional carbon storage. Furthermore, the implementation of new energy policies and projects such as green roofs can help to achieve regional carbon neutrality. The study provides new insights into the accounting of carbon pools within cities and the simulation of fine-grained land use planning based on the dual objectives of carbon stock maximization and urban development.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00285-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1186/s13021-024-00281-1
Till Neeff, Javier G. P. Gamarra, Andreas Vollrath, Erik Lindquist, Ghislaine Gill, Julian Fox, Jennifer Smith, Karen Dyson, Karis Tenneson, Marieke Sandker, Teopista Nakalema
Estimating emissions and removals from forest degradation is important, yet challenging, for many countries. This paper reports results from analysis of country reporting (to the United Nations Framework Convention on Climate Change and also to several climate finance initiatives) and key take-aways from a south-south exchange workshop among 17 countries with forest mitigation programmes. During the workshop discussions it became clear that, where forest degradation is a major source of emissions, governments want to include it when reporting on their mitigation efforts. However, challenges to accurately estimating emissions from degradation relate to defining forest degradation and setting the scope for estimating carbon stock changes; to detecting and monitoring degradation using earth observation data; and to estimating associated emissions and removals from field observation results. The paper concludes that recent and ongoing investments into data and analysis methods have helped improve forest degradation estimation, but further methodological work and continued effort will be needed.
{"title":"Slowly getting there: a review of country experience on estimating emissions and removals from forest degradation","authors":"Till Neeff, Javier G. P. Gamarra, Andreas Vollrath, Erik Lindquist, Ghislaine Gill, Julian Fox, Jennifer Smith, Karen Dyson, Karis Tenneson, Marieke Sandker, Teopista Nakalema","doi":"10.1186/s13021-024-00281-1","DOIUrl":"10.1186/s13021-024-00281-1","url":null,"abstract":"<div><p>Estimating emissions and removals from forest degradation is important, yet challenging, for many countries. This paper reports results from analysis of country reporting (to the United Nations Framework Convention on Climate Change and also to several climate finance initiatives) and key take-aways from a south-south exchange workshop among 17 countries with forest mitigation programmes. During the workshop discussions it became clear that, where forest degradation is a major source of emissions, governments want to include it when reporting on their mitigation efforts. However, challenges to accurately estimating emissions from degradation relate to defining forest degradation and setting the scope for estimating carbon stock changes; to detecting and monitoring degradation using earth observation data; and to estimating associated emissions and removals from field observation results. The paper concludes that recent and ongoing investments into data and analysis methods have helped improve forest degradation estimation, but further methodological work and continued effort will be needed.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00281-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1186/s13021-024-00283-z
Kathryn Wigley, Charlotte Armstrong, Simeon J. Smaill, Nicki M. Reid, Laura Kiely, Steve A. Wakelin
Temperate forest soils are considered significant methane (CH4) sinks, but other methane sources and sinks within these forests, such as trees, litter, deadwood, and the production of volatile organic compounds are not well understood. Improved understanding of all CH4 fluxes in temperate forests could help mitigate CH4 emissions from other sources and improve the accuracy of global greenhouse gas budgets. This review highlights the characteristics of temperate forests that influence CH4 flux and assesses the current understanding of the CH4 cycle in temperate forests, with a focus on those managed for specific purposes. Methane fluxes from trees, litter, deadwood, and soil, as well as the interaction of canopy-released volatile organic compounds on atmospheric methane chemistry are quantified, the processes involved and factors (biological, climatic, management) affecting the magnitude and variance of these fluxes are discussed. Temperate forests are unique in that they are extremely variable due to strong seasonality and significant human intervention. These features control CH4 flux and need to be considered in CH4 budgets. The literature confirmed that temperate planted forest soils are a significant CH4 sink, but tree stems are a small CH4 source. CH4 fluxes from foliage and deadwood vary, and litter fluxes are negligible. The production of volatile organic compounds could increase CH4’s lifetime in the atmosphere, but current in-forest measurements are insufficient to determine the magnitude of any effect. For all sources and sinks more research is required into the mechanisms and microbial community driving CH4 fluxes. The variability in CH4 fluxes within each component of the forest, is also not well understood and has led to overestimation of CH4 fluxes when scaling up measurements to a forest or global scale. A roadmap for sampling and scaling is required to ensure that all CH4 sinks and sources within temperate forests are accurately accounted for and able to be included in CH4 budgets and models to ensure accurate estimates of the contribution of temperate planted forests to the global CH4 cycle.
{"title":"Methane cycling in temperate forests","authors":"Kathryn Wigley, Charlotte Armstrong, Simeon J. Smaill, Nicki M. Reid, Laura Kiely, Steve A. Wakelin","doi":"10.1186/s13021-024-00283-z","DOIUrl":"10.1186/s13021-024-00283-z","url":null,"abstract":"<div><p>Temperate forest soils are considered significant methane (CH<sub>4</sub>) sinks, but other methane sources and sinks within these forests, such as trees, litter, deadwood, and the production of volatile organic compounds are not well understood. Improved understanding of all CH<sub>4</sub> fluxes in temperate forests could help mitigate CH<sub>4</sub> emissions from other sources and improve the accuracy of global greenhouse gas budgets. This review highlights the characteristics of temperate forests that influence CH<sub>4</sub> flux and assesses the current understanding of the CH<sub>4</sub> cycle in temperate forests, with a focus on those managed for specific purposes. Methane fluxes from trees, litter, deadwood, and soil, as well as the interaction of canopy-released volatile organic compounds on atmospheric methane chemistry are quantified, the processes involved and factors (biological, climatic, management) affecting the magnitude and variance of these fluxes are discussed. Temperate forests are unique in that they are extremely variable due to strong seasonality and significant human intervention. These features control CH<sub>4</sub> flux and need to be considered in CH<sub>4</sub> budgets. The literature confirmed that temperate planted forest soils are a significant CH<sub>4</sub> sink, but tree stems are a small CH<sub>4</sub> source. CH<sub>4</sub> fluxes from foliage and deadwood vary, and litter fluxes are negligible. The production of volatile organic compounds could increase CH<sub>4</sub>’s lifetime in the atmosphere, but current in-forest measurements are insufficient to determine the magnitude of any effect. For all sources and sinks more research is required into the mechanisms and microbial community driving CH<sub>4</sub> fluxes. The variability in CH<sub>4</sub> fluxes within each component of the forest, is also not well understood and has led to overestimation of CH<sub>4</sub> fluxes when scaling up measurements to a forest or global scale. A roadmap for sampling and scaling is required to ensure that all CH<sub>4</sub> sinks and sources within temperate forests are accurately accounted for and able to be included in CH<sub>4</sub> budgets and models to ensure accurate estimates of the contribution of temperate planted forests to the global CH<sub>4</sub> cycle.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00283-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}