Bei Yang, Guilan Tian, Joseph Luttrell, Ping Gong, Chaoyang Zhang
{"title":"A quantum-based oversampling method for classification of highly imbalanced and overlapped data.","authors":"Bei Yang, Guilan Tian, Joseph Luttrell, Ping Gong, Chaoyang Zhang","doi":"10.1177/15353702231220665","DOIUrl":null,"url":null,"abstract":"<p><p>Data imbalance is a challenging problem in classification tasks, and when combined with class overlapping, it further deteriorates classification performance. However, existing studies have rarely addressed both issues simultaneously. In this article, we propose a novel quantum-based oversampling method (QOSM) to effectively tackle data imbalance and class overlapping, thereby improving classification performance. QOSM utilizes the quantum potential theory to calculate the potential energy of each sample and selects the sample with the lowest potential as the center of each cover generated by a constructive covering algorithm. This approach optimizes cover center selection and better captures the distribution of the original samples, particularly in the overlapping regions. In addition, oversampling is performed on the samples of the minority class covers to mitigate the imbalance ratio (IR). We evaluated QOSM using three traditional classifiers (support vector machines [SVM], k-nearest neighbor [KNN], and naive Bayes [NB] classifier) on 10 publicly available KEEL data sets characterized by high IRs and varying degrees of overlap. Experimental results demonstrate that QOSM significantly improves classification accuracy compared to approaches that do not address class imbalance and overlapping. Moreover, QOSM consistently outperforms existing oversampling methods tested. With its compatibility with different classifiers, QOSM exhibits promising potential to improve the classification performance of highly imbalanced and overlapped data.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854475/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15353702231220665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Data imbalance is a challenging problem in classification tasks, and when combined with class overlapping, it further deteriorates classification performance. However, existing studies have rarely addressed both issues simultaneously. In this article, we propose a novel quantum-based oversampling method (QOSM) to effectively tackle data imbalance and class overlapping, thereby improving classification performance. QOSM utilizes the quantum potential theory to calculate the potential energy of each sample and selects the sample with the lowest potential as the center of each cover generated by a constructive covering algorithm. This approach optimizes cover center selection and better captures the distribution of the original samples, particularly in the overlapping regions. In addition, oversampling is performed on the samples of the minority class covers to mitigate the imbalance ratio (IR). We evaluated QOSM using three traditional classifiers (support vector machines [SVM], k-nearest neighbor [KNN], and naive Bayes [NB] classifier) on 10 publicly available KEEL data sets characterized by high IRs and varying degrees of overlap. Experimental results demonstrate that QOSM significantly improves classification accuracy compared to approaches that do not address class imbalance and overlapping. Moreover, QOSM consistently outperforms existing oversampling methods tested. With its compatibility with different classifiers, QOSM exhibits promising potential to improve the classification performance of highly imbalanced and overlapped data.