Mini Thomas, Omar Boursalie, Reza Samavi, Thomas E Doyle
{"title":"Data-driven approach to quantify trust in medical devices using Bayesian networks.","authors":"Mini Thomas, Omar Boursalie, Reza Samavi, Thomas E Doyle","doi":"10.1177/15353702231215893","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian networks are increasingly used to quantify the uncertainty of subjective and stochastic concepts such as trust. In this article, we propose a data-driven approach to estimate Bayesian parameters in the domain of wearable medical devices. Our approach extracts the probability of a trust factor being in a specific state directly from the devices (e.g. sensor quality). The strength of the relationship between related factors is defined by expert knowledge and incorporated into the model. We use propagation rules from requirements engineering to estimate how much each trust factor contributes to the related intermediate nodes in the network and ultimately compute the trust score. The trust score is a relative measure of trustworthiness when different devices are evaluated in the same test conditions and using the same Bayesian structure. To evaluate our approach, we developed Bayesian networks for the trust quantification of similar wearable devices from two manufacturers under identical test conditions and noise levels. The results demonstrated the learnability and generalizability of our approach.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":" ","pages":"2578-2592"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854471/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15353702231215893","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bayesian networks are increasingly used to quantify the uncertainty of subjective and stochastic concepts such as trust. In this article, we propose a data-driven approach to estimate Bayesian parameters in the domain of wearable medical devices. Our approach extracts the probability of a trust factor being in a specific state directly from the devices (e.g. sensor quality). The strength of the relationship between related factors is defined by expert knowledge and incorporated into the model. We use propagation rules from requirements engineering to estimate how much each trust factor contributes to the related intermediate nodes in the network and ultimately compute the trust score. The trust score is a relative measure of trustworthiness when different devices are evaluated in the same test conditions and using the same Bayesian structure. To evaluate our approach, we developed Bayesian networks for the trust quantification of similar wearable devices from two manufacturers under identical test conditions and noise levels. The results demonstrated the learnability and generalizability of our approach.
期刊介绍:
Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population.
Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.