Pui Ying Yew, Yue Liang, Terrence J Adam, Julian Wolfson, Peter J Tonellato, Chih-Lin Chi
{"title":"Decision rules for personalized statin treatment prescriptions over multi-objectives.","authors":"Pui Ying Yew, Yue Liang, Terrence J Adam, Julian Wolfson, Peter J Tonellato, Chih-Lin Chi","doi":"10.1177/15353702231220660","DOIUrl":null,"url":null,"abstract":"<p><p>In our previous study, we demonstrated the feasibility of producing a proactive statin prescription strategy - a personalized statin treatment plan (PSTP) - using neural networks with big data. However, its non-transparency limited result interpretations and clinical usability. To improve the transparency of our previous approach with minimal compromise to the maximal statin treatment benefit-to-risk ratio, this study proposed a five-step pipeline approach called the decision rules for statin treatment (DRST). Steps 1-3 of our proposed pipeline improved our previous PSTP model in optimizing individual benefit-to-risk ratio; Step 4 used a decision tree model (DRST) to provide straightforward rules in the initial statin treatment plan; Step 5 aimed to evaluate the efficacy of these decision rules by conducting a clinical trial simulation. We included 107,739 de-identified patient data from Optum Labs Database Warehouse in this study. The final decision rules were compact and efficient, resulting from a decision tree with only a maximum depth of 3 and 11 nodes. The DRST identified three factors that are easily obtainable at the point of care: age, low-density lipoprotein cholesterol (LDL-C) level, and age-adjusted Charlson score. Moreover, it also identified six subpopulations that can benefit most from these decision rules. In our clinical trial simulations, DRST was found to improve statin benefit in LDL-C reduction by 4.15 percentage points (pp) and reduce risks of statin-associated symptoms (SAS) and statin discontinuation by 11.71 and 3.96 pp, respectively, when compared to the standard of care. Moreover, these DRST results were only less than 0.6 pp suboptimal to PSTP, demonstrating that building DRST that provide transparency with minimal compromise to the maximal benefit-to-risk ratio of statin treatments is feasible.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":" ","pages":"2526-2537"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854472/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15353702231220660","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
In our previous study, we demonstrated the feasibility of producing a proactive statin prescription strategy - a personalized statin treatment plan (PSTP) - using neural networks with big data. However, its non-transparency limited result interpretations and clinical usability. To improve the transparency of our previous approach with minimal compromise to the maximal statin treatment benefit-to-risk ratio, this study proposed a five-step pipeline approach called the decision rules for statin treatment (DRST). Steps 1-3 of our proposed pipeline improved our previous PSTP model in optimizing individual benefit-to-risk ratio; Step 4 used a decision tree model (DRST) to provide straightforward rules in the initial statin treatment plan; Step 5 aimed to evaluate the efficacy of these decision rules by conducting a clinical trial simulation. We included 107,739 de-identified patient data from Optum Labs Database Warehouse in this study. The final decision rules were compact and efficient, resulting from a decision tree with only a maximum depth of 3 and 11 nodes. The DRST identified three factors that are easily obtainable at the point of care: age, low-density lipoprotein cholesterol (LDL-C) level, and age-adjusted Charlson score. Moreover, it also identified six subpopulations that can benefit most from these decision rules. In our clinical trial simulations, DRST was found to improve statin benefit in LDL-C reduction by 4.15 percentage points (pp) and reduce risks of statin-associated symptoms (SAS) and statin discontinuation by 11.71 and 3.96 pp, respectively, when compared to the standard of care. Moreover, these DRST results were only less than 0.6 pp suboptimal to PSTP, demonstrating that building DRST that provide transparency with minimal compromise to the maximal benefit-to-risk ratio of statin treatments is feasible.
期刊介绍:
Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population.
Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.