Meenakshi Pinnenti, Muhammad Ahsan Sami, Umer Hassan
{"title":"Enabling biomedical technologies for chronic myelogenous leukemia (CML) biomarkers detection.","authors":"Meenakshi Pinnenti, Muhammad Ahsan Sami, Umer Hassan","doi":"10.1063/5.0172550","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic myelogenous/myeloid leukemia (CML) is a type of cancer of bone marrow that arises from hematopoietic stem cells and affects millions of people worldwide. Eighty-five percent of the CML cases are diagnosed during chronic phase, most of which are detected through routine tests. Leukocytes, micro-Ribonucleic Acids, and myeloid markers are the primary biomarkers for CML diagnosis and are mainly detected using real-time reverse transcription polymerase chain reaction, flow cytometry, and genetic testing. Though multiple therapies have been developed to treat CML, early detection still plays a pivotal role in the overall patient survival rate. The current technologies used for CML diagnosis are costly and are confined to laboratory settings which impede their application in the point-of-care settings for early-stage detection of CML. This study provides detailed analysis and insights into the significance of CML, patient symptoms, biomarkers used for testing, and best possible detection techniques responsible for the enhancement in survival rates. A critical and detailed review is provided around potential microfluidic devices that can be adapted to detect the biomarkers associated with CML while enabling point-of-care testing for early diagnosis of CML to improve patient survival rates.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10817778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0172550","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic myelogenous/myeloid leukemia (CML) is a type of cancer of bone marrow that arises from hematopoietic stem cells and affects millions of people worldwide. Eighty-five percent of the CML cases are diagnosed during chronic phase, most of which are detected through routine tests. Leukocytes, micro-Ribonucleic Acids, and myeloid markers are the primary biomarkers for CML diagnosis and are mainly detected using real-time reverse transcription polymerase chain reaction, flow cytometry, and genetic testing. Though multiple therapies have been developed to treat CML, early detection still plays a pivotal role in the overall patient survival rate. The current technologies used for CML diagnosis are costly and are confined to laboratory settings which impede their application in the point-of-care settings for early-stage detection of CML. This study provides detailed analysis and insights into the significance of CML, patient symptoms, biomarkers used for testing, and best possible detection techniques responsible for the enhancement in survival rates. A critical and detailed review is provided around potential microfluidic devices that can be adapted to detect the biomarkers associated with CML while enabling point-of-care testing for early diagnosis of CML to improve patient survival rates.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...