Design, Development and In-Vitro Characterization of Insulin Loaded Topical Pluronic-Lecithin Based Organogel Formulation for the Management of Diabetic Wound.
{"title":"Design, Development and <i>In-Vitro</i> Characterization of Insulin Loaded Topical Pluronic-Lecithin Based Organogel Formulation for the Management of Diabetic Wound.","authors":"Sunita Chauhan, Vikas Jhawat, Rahul Pratap Singh, Abhishek Yadav, Vandana Garg","doi":"10.2174/0126673878279693231227081931","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To develop and characterize the topical insulin-loaded organogel formulation for the management of diabetic wounds.</p><p><strong>Objectives: </strong>To formulate and evaluate organogel of insulin that can serve as a topical administration for promoting enhanced wound healing in diabetic patients by providing sustained and localized delivery of drug to the wound site.</p><p><strong>Methodology: </strong>The insulin organogel formulated by the micro-emulsion method involves mixing the \"aqueous and oil phases\" at high shear. Physical and chemical properties, as well as an in vitro study with a Franz diffusion chamber, were used to evaluate the prepared organogel.</p><p><strong>Results: </strong>All formulations proved to be off-white, homogeneous, washable, and had a pH between 6 and 6.5; moreover, they were non-irritating and skin-compatible. Formulations F1-F6 had viscosity ranging from 2058 to 3168 cps, spreadability ranges of 0.35 to 0.52 g*cm/s, and gel transition ranges of 28.33 to 35.33 °C. In formulations F1-F3, the concentration of lecithin was gradually increased, and in formulations F4-F6, the concentration of PF-127 was increased, resulting in a decrease in gel transition temperature, an increase in viscosity, and a gradual change in spreadability. The higher-viscosity formulations were much more stable and had better drug release. All formulations were fitted to a kinetic model belonging to first-order kinetics. However, after examining the parameter evaluation, it was found that the formulations F2 and F6 were better suited to the kinetic model and were consistent with the first-order and Higuchi models in Korsmeyer-Peppas F2 (r2 = 0.9544 and n = 1.0412); F6 (r2 = 0.9019 and n = 1.0822), which was a confirmation of the sustainability of the release system with matrix diffusion and drug delivery mechanisms that were based on the Super-Case II transport.</p><p><strong>Conclusion: </strong>Further research and clinical trials are needed to validate its efficacy, optimize the formulation, and establish its long-term safety. Topical insulin organogel has the potential to revolutionize diabetic wound management by improving healing outcomes, reducing complications, and raising the standard of living for those who have diabetes.</p>","PeriodicalId":94352,"journal":{"name":"Recent advances in drug delivery and formulation","volume":" ","pages":"50-60"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent advances in drug delivery and formulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0126673878279693231227081931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: To develop and characterize the topical insulin-loaded organogel formulation for the management of diabetic wounds.
Objectives: To formulate and evaluate organogel of insulin that can serve as a topical administration for promoting enhanced wound healing in diabetic patients by providing sustained and localized delivery of drug to the wound site.
Methodology: The insulin organogel formulated by the micro-emulsion method involves mixing the "aqueous and oil phases" at high shear. Physical and chemical properties, as well as an in vitro study with a Franz diffusion chamber, were used to evaluate the prepared organogel.
Results: All formulations proved to be off-white, homogeneous, washable, and had a pH between 6 and 6.5; moreover, they were non-irritating and skin-compatible. Formulations F1-F6 had viscosity ranging from 2058 to 3168 cps, spreadability ranges of 0.35 to 0.52 g*cm/s, and gel transition ranges of 28.33 to 35.33 °C. In formulations F1-F3, the concentration of lecithin was gradually increased, and in formulations F4-F6, the concentration of PF-127 was increased, resulting in a decrease in gel transition temperature, an increase in viscosity, and a gradual change in spreadability. The higher-viscosity formulations were much more stable and had better drug release. All formulations were fitted to a kinetic model belonging to first-order kinetics. However, after examining the parameter evaluation, it was found that the formulations F2 and F6 were better suited to the kinetic model and were consistent with the first-order and Higuchi models in Korsmeyer-Peppas F2 (r2 = 0.9544 and n = 1.0412); F6 (r2 = 0.9019 and n = 1.0822), which was a confirmation of the sustainability of the release system with matrix diffusion and drug delivery mechanisms that were based on the Super-Case II transport.
Conclusion: Further research and clinical trials are needed to validate its efficacy, optimize the formulation, and establish its long-term safety. Topical insulin organogel has the potential to revolutionize diabetic wound management by improving healing outcomes, reducing complications, and raising the standard of living for those who have diabetes.