Design, Development and In-Vitro Characterization of Insulin Loaded Topical Pluronic-Lecithin Based Organogel Formulation for the Management of Diabetic Wound.

Sunita Chauhan, Vikas Jhawat, Rahul Pratap Singh, Abhishek Yadav, Vandana Garg
{"title":"Design, Development and <i>In-Vitro</i> Characterization of Insulin Loaded Topical Pluronic-Lecithin Based Organogel Formulation for the Management of Diabetic Wound.","authors":"Sunita Chauhan, Vikas Jhawat, Rahul Pratap Singh, Abhishek Yadav, Vandana Garg","doi":"10.2174/0126673878279693231227081931","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To develop and characterize the topical insulin-loaded organogel formulation for the management of diabetic wounds.</p><p><strong>Objectives: </strong>To formulate and evaluate organogel of insulin that can serve as a topical administration for promoting enhanced wound healing in diabetic patients by providing sustained and localized delivery of drug to the wound site.</p><p><strong>Methodology: </strong>The insulin organogel formulated by the micro-emulsion method involves mixing the \"aqueous and oil phases\" at high shear. Physical and chemical properties, as well as an in vitro study with a Franz diffusion chamber, were used to evaluate the prepared organogel.</p><p><strong>Results: </strong>All formulations proved to be off-white, homogeneous, washable, and had a pH between 6 and 6.5; moreover, they were non-irritating and skin-compatible. Formulations F1-F6 had viscosity ranging from 2058 to 3168 cps, spreadability ranges of 0.35 to 0.52 g*cm/s, and gel transition ranges of 28.33 to 35.33 °C. In formulations F1-F3, the concentration of lecithin was gradually increased, and in formulations F4-F6, the concentration of PF-127 was increased, resulting in a decrease in gel transition temperature, an increase in viscosity, and a gradual change in spreadability. The higher-viscosity formulations were much more stable and had better drug release. All formulations were fitted to a kinetic model belonging to first-order kinetics. However, after examining the parameter evaluation, it was found that the formulations F2 and F6 were better suited to the kinetic model and were consistent with the first-order and Higuchi models in Korsmeyer-Peppas F2 (r2 = 0.9544 and n = 1.0412); F6 (r2 = 0.9019 and n = 1.0822), which was a confirmation of the sustainability of the release system with matrix diffusion and drug delivery mechanisms that were based on the Super-Case II transport.</p><p><strong>Conclusion: </strong>Further research and clinical trials are needed to validate its efficacy, optimize the formulation, and establish its long-term safety. Topical insulin organogel has the potential to revolutionize diabetic wound management by improving healing outcomes, reducing complications, and raising the standard of living for those who have diabetes.</p>","PeriodicalId":94352,"journal":{"name":"Recent advances in drug delivery and formulation","volume":" ","pages":"50-60"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent advances in drug delivery and formulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0126673878279693231227081931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: To develop and characterize the topical insulin-loaded organogel formulation for the management of diabetic wounds.

Objectives: To formulate and evaluate organogel of insulin that can serve as a topical administration for promoting enhanced wound healing in diabetic patients by providing sustained and localized delivery of drug to the wound site.

Methodology: The insulin organogel formulated by the micro-emulsion method involves mixing the "aqueous and oil phases" at high shear. Physical and chemical properties, as well as an in vitro study with a Franz diffusion chamber, were used to evaluate the prepared organogel.

Results: All formulations proved to be off-white, homogeneous, washable, and had a pH between 6 and 6.5; moreover, they were non-irritating and skin-compatible. Formulations F1-F6 had viscosity ranging from 2058 to 3168 cps, spreadability ranges of 0.35 to 0.52 g*cm/s, and gel transition ranges of 28.33 to 35.33 °C. In formulations F1-F3, the concentration of lecithin was gradually increased, and in formulations F4-F6, the concentration of PF-127 was increased, resulting in a decrease in gel transition temperature, an increase in viscosity, and a gradual change in spreadability. The higher-viscosity formulations were much more stable and had better drug release. All formulations were fitted to a kinetic model belonging to first-order kinetics. However, after examining the parameter evaluation, it was found that the formulations F2 and F6 were better suited to the kinetic model and were consistent with the first-order and Higuchi models in Korsmeyer-Peppas F2 (r2 = 0.9544 and n = 1.0412); F6 (r2 = 0.9019 and n = 1.0822), which was a confirmation of the sustainability of the release system with matrix diffusion and drug delivery mechanisms that were based on the Super-Case II transport.

Conclusion: Further research and clinical trials are needed to validate its efficacy, optimize the formulation, and establish its long-term safety. Topical insulin organogel has the potential to revolutionize diabetic wound management by improving healing outcomes, reducing complications, and raising the standard of living for those who have diabetes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计、开发和体外表征用于治疗糖尿病伤口的胰岛素外用聚uronic-卵磷脂有机凝胶配方
目的:开发并鉴定用于治疗糖尿病伤口的局部胰岛素有机凝胶配方:配制和评估胰岛素有机凝胶,通过向伤口部位持续局部给药,促进糖尿病患者伤口愈合:胰岛素有机凝胶采用微乳液法配制,包括在高剪切下混合 "水相和油相"。方法:采用微乳液法配制的胰岛素有机凝胶需要在高剪切力下混合 "水相和油相",并利用物理和化学特性以及弗朗兹扩散室的体外研究对配制的有机凝胶进行评估:结果:所有配方均为灰白色,均匀,可清洗,pH 值介于 6 和 6.5 之间;此外,它们无刺激性,与皮肤相容。配方 F1-F6 的粘度范围为 2058 至 3168 cps,铺展性范围为 0.35 至 0.52 g*cm/s,凝胶转变范围为 28.33 至 35.33 °C。在配方 F1-F3 中,卵磷脂的浓度逐渐增加,而在配方 F4-F6 中,PF-127 的浓度增加,导致凝胶转变温度降低,粘度增加,铺展性逐渐改变。粘度较高的配方更加稳定,药物释放效果更好。所有配方均符合一阶动力学模型。然而,在对参数进行评估后发现,配方 F2 和 F6 更适合动力学模型,与 Korsmeyer-Peppas 的一阶模型和 Higuchi 模型一致 F2(r2 = 0.9544,n = 1.0412);F6(r2 = 0.9019,n = 1.0822),这证实了基质扩散释放系统的可持续性和基于超基质 II 转运的给药机制:结论:还需要进一步的研究和临床试验来验证其疗效、优化配方并确定其长期安全性。外用胰岛素有机凝胶有望通过改善愈合效果、减少并发症和提高糖尿病患者的生活水平,彻底改变糖尿病伤口的管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Oral Bioavailability and Stability Studies of Loratadine Tablets Based on Solid Dispersion of Modified Ziziphus spina-christi Gum Crisaborole-Enthused Glycerosomal Gel for an Augmented Skin Permeation. In Vitro Development of Enteric-Coated Tablets of the Probiotic Lactobacillus fermentum LF-G89: A Possible Approach to Intestinal Colonization. Formulation Consideration of Medicated Chewing Gum: A Review. Ion-activated In Situ Gel of Gellan Gum Containing Chrysin for Nasal Administration in Parkinson's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1