Run Zhao , Jiale Dong , Chunlei Liu , Mingheng Li , Ruiqian Tan , Chengshuo Fei , Yanlin Chen , Xinxing Yang , Jiawei Shi , Jiajia Xu , Liang Wang , Peng Li , Zhongmin Zhang
{"title":"Thrombospondin-1 promotes mechanical stress-mediated ligamentum flavum hypertrophy through the TGFβ1/Smad3 signaling pathway","authors":"Run Zhao , Jiale Dong , Chunlei Liu , Mingheng Li , Ruiqian Tan , Chengshuo Fei , Yanlin Chen , Xinxing Yang , Jiawei Shi , Jiajia Xu , Liang Wang , Peng Li , Zhongmin Zhang","doi":"10.1016/j.matbio.2024.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>Lumbar spinal canal stenosis is primarily caused by ligamentum flavum hypertrophy (LFH), which is a significant pathological factor. Nevertheless, the precise molecular basis for the development of LFH remains uncertain. The current investigation observed a notable increase in thrombospondin-1 (THBS1) expression in LFH through proteomics analysis and single-cell RNA-sequencing analysis of clinical ligamentum flavum specimens. In laboratory experiments, it was demonstrated that THBS1 triggered the activation of Smad3 signaling induced by transforming growth factor β1 (TGFβ1), leading to the subsequent enhancement of COL1A2 and α-SMA, which are fibrosis markers. Furthermore, experiments conducted on a bipedal standing mouse model revealed that THBS1 played a crucial role in the development of LFH. Sestrin2 (SESN2) acted as a stress-responsive protein that suppressed the expression of THBS1, thus averting the progression of fibrosis in ligamentum flavum (LF) cells. To summarize, these results indicate that mechanical overloading causes an increase in THBS1 production, which triggers the TGFβ1/Smad3 signaling pathway and ultimately results in the development of LFH. Targeting the suppression of THBS1 expression may present a novel approach for the treatment of LFH.</p></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"127 ","pages":"Pages 8-22"},"PeriodicalIF":4.5000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0945053X24000131/pdfft?md5=7bf72a3a078d6362ab463c417c0953c3&pid=1-s2.0-S0945053X24000131-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0945053X24000131","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lumbar spinal canal stenosis is primarily caused by ligamentum flavum hypertrophy (LFH), which is a significant pathological factor. Nevertheless, the precise molecular basis for the development of LFH remains uncertain. The current investigation observed a notable increase in thrombospondin-1 (THBS1) expression in LFH through proteomics analysis and single-cell RNA-sequencing analysis of clinical ligamentum flavum specimens. In laboratory experiments, it was demonstrated that THBS1 triggered the activation of Smad3 signaling induced by transforming growth factor β1 (TGFβ1), leading to the subsequent enhancement of COL1A2 and α-SMA, which are fibrosis markers. Furthermore, experiments conducted on a bipedal standing mouse model revealed that THBS1 played a crucial role in the development of LFH. Sestrin2 (SESN2) acted as a stress-responsive protein that suppressed the expression of THBS1, thus averting the progression of fibrosis in ligamentum flavum (LF) cells. To summarize, these results indicate that mechanical overloading causes an increase in THBS1 production, which triggers the TGFβ1/Smad3 signaling pathway and ultimately results in the development of LFH. Targeting the suppression of THBS1 expression may present a novel approach for the treatment of LFH.
期刊介绍:
Matrix Biology (established in 1980 as Collagen and Related Research) is a cutting-edge journal that is devoted to publishing the latest results in matrix biology research. We welcome articles that reside at the nexus of understanding the cellular and molecular pathophysiology of the extracellular matrix. Matrix Biology focusses on solving elusive questions, opening new avenues of thought and discovery, and challenging longstanding biological paradigms.