{"title":"Fusion of Multimodal Medical Images Based on Fine-Grained Saliency and Anisotropic Diffusion Filter.","authors":"Harmanpreet Kaur, Renu Vig, Naresh Kumar, Apoorav Sharma, Ayush Dogra, Bhawna Goyal","doi":"10.2174/0115734056269626231201042100","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A clinical medical image provides vital information about a person's health and bodily condition. Typically, doctors monitor and examine several types of medical images individually to gather supplementary information for illness diagnosis and treatment. As it is arduous to analyze and diagnose from a single image, multi-modality images have been shown to enhance the precision of diagnosis and evaluation of medical conditions.</p><p><strong>Objective: </strong>Several conventional image fusion techniques strengthen the consistency of the information by combining varied image observations; nevertheless, the drawback of these techniques in retaining all crucial elements of the original images can have a negative impact on the accuracy of clinical diagnoses. This research develops an improved image fusion technique based on fine-grained saliency and an anisotropic diffusion filter to preserve structural and detailed information of the individual image.</p><p><strong>Method: </strong>In contrast to prior efforts, the saliency method is not executed using a pyramidal decomposition, but rather an integral image on the original scale is used to obtain features of superior quality. Furthermore, an anisotropic diffusion filter is utilized for the decomposition of the original source images into a base layer and a detail layer. The proposed algorithm's performance is then contrasted to those of cutting-edge image fusion algorithms.</p><p><strong>Results: </strong>The proposed approach cannot only cope with the fusion of medical images well, both subjectively and objectively, according to the results obtained, but also has high computational efficiency.</p><p><strong>Conclusion: </strong>Furthermore, it provides a roadmap for the direction of future research.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056269626231201042100","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: A clinical medical image provides vital information about a person's health and bodily condition. Typically, doctors monitor and examine several types of medical images individually to gather supplementary information for illness diagnosis and treatment. As it is arduous to analyze and diagnose from a single image, multi-modality images have been shown to enhance the precision of diagnosis and evaluation of medical conditions.
Objective: Several conventional image fusion techniques strengthen the consistency of the information by combining varied image observations; nevertheless, the drawback of these techniques in retaining all crucial elements of the original images can have a negative impact on the accuracy of clinical diagnoses. This research develops an improved image fusion technique based on fine-grained saliency and an anisotropic diffusion filter to preserve structural and detailed information of the individual image.
Method: In contrast to prior efforts, the saliency method is not executed using a pyramidal decomposition, but rather an integral image on the original scale is used to obtain features of superior quality. Furthermore, an anisotropic diffusion filter is utilized for the decomposition of the original source images into a base layer and a detail layer. The proposed algorithm's performance is then contrasted to those of cutting-edge image fusion algorithms.
Results: The proposed approach cannot only cope with the fusion of medical images well, both subjectively and objectively, according to the results obtained, but also has high computational efficiency.
Conclusion: Furthermore, it provides a roadmap for the direction of future research.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.