Lafora progressive myoclonus epilepsy: Disease mechanism and therapeutic attempts.

IF 2.1 4区 生物学 Q2 BIOLOGY Journal of Biosciences Pub Date : 2024-01-01
Rashmi Parihar, Subramaniam Ganesh
{"title":"Lafora progressive myoclonus epilepsy: Disease mechanism and therapeutic attempts.","authors":"Rashmi Parihar, Subramaniam Ganesh","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Lafora disease (LD) is a life-threatening autosomal recessive and progressive neurodegenerative disorder that primarily affects adolescents, resulting in mortality within a decade of onset. The symptoms of LD include epileptic seizures, ataxia, dementia, and psychosis. The underlying pathology involves the presence of abnormal glycogen inclusions in neurons and other tissues, which may contribute to neurodegeneration. LD is caused by loss-of-function mutations in either the <i>EPM2A</i> gene or the <i>NHLRC1</i> gene. These two genes, respectively, code for laforin phosphatase and malin ubiquitin ligase, and are thought to function, as a functional complex, in diverse cellular pathways. One of the major pathways affected in LD is glycogen metabolism; defects here lead to abnormally higher levels of glycogen and its hyperphosphorylation and aggregation, resulting in the formation of Lafora inclusion bodies. Currently, there is no effective therapy for LD. Studies, particularly from animal models, provide distinct insights into the fundamental mechanisms of diseases and potential avenues for therapeutic interventions. The purpose of this review is to present a comprehensive overview of our current knowledge regarding the disease, its genetics, the animal models that have been developed, and the therapeutic strategies that are being developed based on an understanding of the disease mechanism.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"49 ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lafora disease (LD) is a life-threatening autosomal recessive and progressive neurodegenerative disorder that primarily affects adolescents, resulting in mortality within a decade of onset. The symptoms of LD include epileptic seizures, ataxia, dementia, and psychosis. The underlying pathology involves the presence of abnormal glycogen inclusions in neurons and other tissues, which may contribute to neurodegeneration. LD is caused by loss-of-function mutations in either the EPM2A gene or the NHLRC1 gene. These two genes, respectively, code for laforin phosphatase and malin ubiquitin ligase, and are thought to function, as a functional complex, in diverse cellular pathways. One of the major pathways affected in LD is glycogen metabolism; defects here lead to abnormally higher levels of glycogen and its hyperphosphorylation and aggregation, resulting in the formation of Lafora inclusion bodies. Currently, there is no effective therapy for LD. Studies, particularly from animal models, provide distinct insights into the fundamental mechanisms of diseases and potential avenues for therapeutic interventions. The purpose of this review is to present a comprehensive overview of our current knowledge regarding the disease, its genetics, the animal models that have been developed, and the therapeutic strategies that are being developed based on an understanding of the disease mechanism.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拉弗拉进行性肌阵挛癫痫:疾病机制与治疗尝试。
拉弗拉病(Lafora disease,LD)是一种威胁生命的常染色体隐性进行性神经退行性疾病,主要影响青少年,导致患者在发病后十年内死亡。LD 的症状包括癫痫发作、共济失调、痴呆和精神病。其病理基础是神经元和其他组织中存在异常的糖原内含物,这可能会导致神经变性。LD 由 EPM2A 基因或 NHLRC1 基因的功能缺失突变引起。这两个基因分别编码laforin磷酸酶和malin泛素连接酶,被认为作为一个功能复合体在多种细胞通路中发挥作用。糖原代谢是受 LD 影响的主要途径之一;糖原代谢缺陷会导致糖原水平异常升高、过度磷酸化和聚集,从而形成拉弗拉包涵体。目前,LD 还没有有效的治疗方法。研究,尤其是动物模型的研究,为了解疾病的基本机制和治疗干预的潜在途径提供了独特的见解。本综述旨在全面概述我们目前对该疾病、其遗传学、已开发的动物模型以及基于对疾病机理的了解而正在开发的治疗策略的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biosciences
Journal of Biosciences 生物-生物学
CiteScore
5.80
自引率
0.00%
发文量
83
审稿时长
3 months
期刊介绍: The Journal of Biosciences is a quarterly journal published by the Indian Academy of Sciences, Bangalore. It covers all areas of Biology and is the premier journal in the country within its scope. It is indexed in Current Contents and other standard Biological and Medical databases. The Journal of Biosciences began in 1934 as the Proceedings of the Indian Academy of Sciences (Section B). This continued until 1978 when it was split into three parts : Proceedings-Animal Sciences, Proceedings-Plant Sciences and Proceedings-Experimental Biology. Proceedings-Experimental Biology was renamed Journal of Biosciences in 1979; and in 1991, Proceedings-Animal Sciences and Proceedings-Plant Sciences merged with it.
期刊最新文献
Comparative analysis of Quercus suber L. acorns in natural and semi-natural stands: Morphology characterization, insect attacks, and chemical composition Phosphorylation mapping of laminin γ1-chain: Kinases, functional interaction sequences, and phosphorylation-interfering cancer mutations IRF9 and STAT1 as biomarkers involved in T-cell immunity in atherosclerosis Wisdom of (molecular) crowds: How a snake’s temperature-sensing superpower separates information from misinformation CDCA: Community detection in RNA-seq data using centrality-based approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1