Design, Synthesis and In Vitro Evaluation of Levodopa Stearic Acid Hydrazide Conjugate for the Management of Parkinson's DiseaseNovel Conjugate for Parkinson's Disease.
{"title":"Design, Synthesis and In Vitro Evaluation of Levodopa Stearic Acid Hydrazide Conjugate for the Management of Parkinson's DiseaseNovel Conjugate for Parkinson's Disease.","authors":"Vasanthi Chinraj, Ramakkamma Aishwarya Reddy, Jubie Selvaraj, Raman Sureshkumar","doi":"10.1055/a-2234-9859","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease is the highest prevalent neurodegenerative disease in elderly individuals after Alzheimer's disease. The pathological identification for Parkinson's disease is loss of dopaminergic neurons in substantia nigra region of the brain that in turn leads to dopamine deficiency that affects the body's normal physiological and neurological disorder. The important drawback in the modality of treatment is levodopa is only supplying depleted dopamine in the brain, it does not affect neurodegeneration. Even though levodopa manages the disease, an alternative treatment strategy is required to stop or prevent further degeneration of neuron. The compound with neuroprotector activity suits the requirement. Of them, stearic acid plays a vital role in protecting neurons against oxidative stress through a Phosphoinositide 3-kinase-dependent mechanism. Hence, our present study aimed to design, synthesize, and characterize the levodopa stearic acid hydrazide conjugate. Additionally, evaluate the cytotoxicity of synthesized compound in SHSY5Y: cell lines. In brief, levodopa was conjugated to the stearic acid successfully and was confirmed with Fourier-transform infrared spectroscopy, Nuclear magnetic resonance, and Mass Spectroscopy. <i>In vitro</i> cell viability study in SHSY5Y: cell lines showed elevated cell viability in 0.134 µm concentration of Conjugate, and 0.563 µm concentration of levodopa. Showing that the synthesized compound could offer an improved treatment strategy for Parkinson's disease.</p>","PeriodicalId":11451,"journal":{"name":"Drug Research","volume":" ","pages":"60-66"},"PeriodicalIF":1.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2234-9859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease is the highest prevalent neurodegenerative disease in elderly individuals after Alzheimer's disease. The pathological identification for Parkinson's disease is loss of dopaminergic neurons in substantia nigra region of the brain that in turn leads to dopamine deficiency that affects the body's normal physiological and neurological disorder. The important drawback in the modality of treatment is levodopa is only supplying depleted dopamine in the brain, it does not affect neurodegeneration. Even though levodopa manages the disease, an alternative treatment strategy is required to stop or prevent further degeneration of neuron. The compound with neuroprotector activity suits the requirement. Of them, stearic acid plays a vital role in protecting neurons against oxidative stress through a Phosphoinositide 3-kinase-dependent mechanism. Hence, our present study aimed to design, synthesize, and characterize the levodopa stearic acid hydrazide conjugate. Additionally, evaluate the cytotoxicity of synthesized compound in SHSY5Y: cell lines. In brief, levodopa was conjugated to the stearic acid successfully and was confirmed with Fourier-transform infrared spectroscopy, Nuclear magnetic resonance, and Mass Spectroscopy. In vitro cell viability study in SHSY5Y: cell lines showed elevated cell viability in 0.134 µm concentration of Conjugate, and 0.563 µm concentration of levodopa. Showing that the synthesized compound could offer an improved treatment strategy for Parkinson's disease.
期刊介绍:
Drug Research (formerly Arzneimittelforschung) is an international peer-reviewed journal with expedited processing times presenting the very latest research results related to novel and established drug molecules and the evaluation of new drug development. A key focus of the publication is translational medicine and the application of biological discoveries in the development of drugs for use in the clinical environment. Articles and experimental data from across the field of drug research address not only the issue of drug discovery, but also the mathematical and statistical methods for evaluating results from industrial investigations and clinical trials. Publishing twelve times a year, Drug Research includes original research articles as well as reviews, commentaries and short communications in the following areas: analytics applied to clinical trials chemistry and biochemistry clinical and experimental pharmacology drug interactions efficacy testing pharmacodynamics pharmacokinetics teratology toxicology.