Forest fragmentation causes an isolated population of the golden takin (Budorcas taxicolor bedfordi Thomas, 1911) (Artiodactyla: Bovidae) in the Qinling Mountains (China).
{"title":"Forest fragmentation causes an isolated population of the golden takin (Budorcas taxicolor bedfordi Thomas, 1911) (Artiodactyla: Bovidae) in the Qinling Mountains (China).","authors":"Hui Feng, Fangjun Cao, Tiezhi Jin, Lu Wang","doi":"10.1186/s40850-024-00192-1","DOIUrl":null,"url":null,"abstract":"<p><p>Budorcas taxicolor bedfordi is a rare animal uniquely distributed in the Qinling Mountains (China). Human disturbance and habitat fragmentation have directly affected the survival of B. t. bedfordi. It is urgent to clarify the genetic diversity and genetic structure of the B. t. bedfordi population and implement effective conservation measures. In this study, 20 new polymorphic microsatellite loci were isolated by Illumina sequencing. The genetic diversity and population structure of 124 B. t. bedfordi individuals from three populations (Niubeliang population, Zhouzhi population, and Foping population) were analysed according to these 20 microsatellite loci. Our results indicated that B. t. bedfordi had a low level of genetic variability and that there was inbreeding in the three populations. The population genetic structure analyses showed that the Niubeliang population had a trend of differentiation from other populations. National roads can affect population dispersal, while ecological corridors can promote population gene exchange. None of the three B. t. bedfordi populations experienced bottleneck effects. For conservation management plans, the Zhouzhi population and Foping population should be considered one management unit, and the Niubeliang population should be considered another management unit. We suggest building an ecological corridor to keep the habitat connected and formulating tourism management measures to reduce the influence of human disturbance on B. t. bedfordi.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10826085/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40850-024-00192-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Budorcas taxicolor bedfordi is a rare animal uniquely distributed in the Qinling Mountains (China). Human disturbance and habitat fragmentation have directly affected the survival of B. t. bedfordi. It is urgent to clarify the genetic diversity and genetic structure of the B. t. bedfordi population and implement effective conservation measures. In this study, 20 new polymorphic microsatellite loci were isolated by Illumina sequencing. The genetic diversity and population structure of 124 B. t. bedfordi individuals from three populations (Niubeliang population, Zhouzhi population, and Foping population) were analysed according to these 20 microsatellite loci. Our results indicated that B. t. bedfordi had a low level of genetic variability and that there was inbreeding in the three populations. The population genetic structure analyses showed that the Niubeliang population had a trend of differentiation from other populations. National roads can affect population dispersal, while ecological corridors can promote population gene exchange. None of the three B. t. bedfordi populations experienced bottleneck effects. For conservation management plans, the Zhouzhi population and Foping population should be considered one management unit, and the Niubeliang population should be considered another management unit. We suggest building an ecological corridor to keep the habitat connected and formulating tourism management measures to reduce the influence of human disturbance on B. t. bedfordi.
B. t. bedfordi是一种分布于秦岭(中国)的珍稀动物。人类的干扰和栖息地的破碎化直接影响了床子蛙的生存。亟需明确床子蛙种群的遗传多样性和遗传结构,并采取有效的保护措施。本研究通过Illumina测序分离了20个新的多态性微卫星位点。根据这20个微卫星位点分析了来自三个种群(牛背梁种群、周至种群和佛坪种群)的124个床福氏蚕个体的遗传多样性和种群结构。结果表明,床福氏蚕的遗传变异水平较低,三个种群存在近交现象。种群遗传结构分析表明,牛背梁种群与其他种群有分化趋势。国道会影响种群扩散,而生态走廊则会促进种群基因交流。三个B. t. bedfordi种群均未出现瓶颈效应。在保护管理计划中,周至种群和佛坪种群应视为一个管理单元,牛背梁种群应视为另一个管理单元。建议建设生态廊道,保持栖息地的连通性,并制定旅游管理措施,减少人为干扰对贝母的影响。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.