A Frequency-Switching Inductive Power Transfer System for Wireless, Miniaturised and Large-Scale Neural Interfaces

Gian Luca Barbruni;Claudia Cordara;Marco Carminati;Sandro Carrara;Diego Ghezzi
{"title":"A Frequency-Switching Inductive Power Transfer System for Wireless, Miniaturised and Large-Scale Neural Interfaces","authors":"Gian Luca Barbruni;Claudia Cordara;Marco Carminati;Sandro Carrara;Diego Ghezzi","doi":"10.1109/TBCAS.2024.3359481","DOIUrl":null,"url":null,"abstract":"Three-coil inductive power transfer is the state-of-the-art solution to power multiple miniaturised neural implants. However, the maximum delivered power is limited by the efficiency of the powering link and safety constrains. Here we propose a frequency-switching inductive link, where the passive resonator normally used in a three-coil link is replaced by an active resonator. It receives power from the external transmitter via a two-coil inductive link at the low frequency of 13.56 MHz. Then, it switches the operating frequency to the higher frequency of 433.92 MHz through a dedicated circuitry. Last, it transmits power to 1024 miniaturised implants via a three-coil inductive link using an array of 37 focusing resonators for a brain coverage of 163.84 mm\n<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>\n. Our simulations reported a power transfer efficiency of 0.013\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n and a maximum power delivered to the load of 1970 \n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\nW under safety-constrains, which are respectively two orders of magnitude and more than six decades higher compared to an equivalent passive three-coil link. The frequency-switching inductive system is a scalable and highly versatile solution for wireless, miniaturised and large-scale neural interfaces.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10415503/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Three-coil inductive power transfer is the state-of-the-art solution to power multiple miniaturised neural implants. However, the maximum delivered power is limited by the efficiency of the powering link and safety constrains. Here we propose a frequency-switching inductive link, where the passive resonator normally used in a three-coil link is replaced by an active resonator. It receives power from the external transmitter via a two-coil inductive link at the low frequency of 13.56 MHz. Then, it switches the operating frequency to the higher frequency of 433.92 MHz through a dedicated circuitry. Last, it transmits power to 1024 miniaturised implants via a three-coil inductive link using an array of 37 focusing resonators for a brain coverage of 163.84 mm $^{2}$ . Our simulations reported a power transfer efficiency of 0.013 $\%$ and a maximum power delivered to the load of 1970 $\mu$ W under safety-constrains, which are respectively two orders of magnitude and more than six decades higher compared to an equivalent passive three-coil link. The frequency-switching inductive system is a scalable and highly versatile solution for wireless, miniaturised and large-scale neural interfaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于无线、微型和大规模神经接口的频率切换感应式功率传输系统。
三线圈感应式功率传输是为多个微型神经植入体供电的最先进解决方案。然而,最大传输功率受限于供电链路的效率和安全限制。在这里,我们提出了一种频率切换感应链路,即用主动谐振器取代通常在三线圈链路中使用的被动谐振器。它通过低频 13.56 MHz 的双线圈感应链路从外部发射器接收电源。然后,它通过专用电路将工作频率切换到较高的 433.92 MHz 频率。我们的模拟报告显示,在安全限制条件下,功率传输效率为 0.013%,向负载传输的最大功率为 1970 μ W,与同等的无源三线圈链路相比,分别高出两个数量级和六十多个数量级。频率开关感应系统是一种可扩展的多功能解决方案,适用于无线、小型化和大规模神经接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of Integrated Dual-Mode Pulse and Continuous-Wave Electron Paramagnetic Resonance Spectrometers. NEXUS: A 28nm 3.3pJ/SOP 16-Core Spiking Neural Network with a Diamond Topology for Real-Time Data Processing. An Electrochemical CMOS Biosensor Array Using Phase-Only Modulation With 0.035% Phase Error And In-Pixel Averaging. GCOC: A Genome Classifier-On-Chip based on Similarity Search Content Addressable Memory. Low-Power and Low-Cost AI Processor with Distributed-Aggregated Classification Architecture for Wearable Epilepsy Seizure Detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1