All-Inorganic Perovskite Solar Cells: Modification Strategies and Challenges

IF 6.2 Q2 ENERGY & FUELS Advanced Energy and Sustainability Research Pub Date : 2024-01-26 DOI:10.1002/aesr.202300263
Xin-Yi Li, Qi Sun, Yue-Min Xie, Man-Keung Fung
{"title":"All-Inorganic Perovskite Solar Cells: Modification Strategies and Challenges","authors":"Xin-Yi Li,&nbsp;Qi Sun,&nbsp;Yue-Min Xie,&nbsp;Man-Keung Fung","doi":"10.1002/aesr.202300263","DOIUrl":null,"url":null,"abstract":"<p>Cesium-based all-inorganic wide-bandgap perovskite solar cells (AIWPSCs) have been demonstrated with exceptional optoelectronic properties such as intrinsic optical wide-bandgap and high thermal stability, which make them suitable candidates for the front sub-cells of tandem solar cells (TSCs). Passivation of perovskite surface and interface is a matter of common interest in this community since all-inorganic perovskites always suffer from non-ideal crystallization such as phase impurity, high defect density, and non-uniform morphology. Despite these shortcomings, numerous efforts have been devoted in recent years to pursuing high-performance AIWPSCs, which exhibit an abruptly increased power conversion efficiency (PCE) from 2.9% to over 21.0%. In view of not having a thorough summary about the advancements on AIWPSCs, herein, a comprehensive review is given to highlight the recent device performance progress of AIWPSC, particularly focusing on the strategies to passivate the defects of all-inorganic perovskite, namely, additive engineering, solvent engineering, interface modification, and the exploration of new charge transport materials (CTMs) for improving the phase stability and PCE of AIWPSCs. Finally, a conclusive outlook on AIWPSCs will be given to provide our perspectives aiming to inspire the further development of AIWPSCs.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202300263","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202300263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Cesium-based all-inorganic wide-bandgap perovskite solar cells (AIWPSCs) have been demonstrated with exceptional optoelectronic properties such as intrinsic optical wide-bandgap and high thermal stability, which make them suitable candidates for the front sub-cells of tandem solar cells (TSCs). Passivation of perovskite surface and interface is a matter of common interest in this community since all-inorganic perovskites always suffer from non-ideal crystallization such as phase impurity, high defect density, and non-uniform morphology. Despite these shortcomings, numerous efforts have been devoted in recent years to pursuing high-performance AIWPSCs, which exhibit an abruptly increased power conversion efficiency (PCE) from 2.9% to over 21.0%. In view of not having a thorough summary about the advancements on AIWPSCs, herein, a comprehensive review is given to highlight the recent device performance progress of AIWPSC, particularly focusing on the strategies to passivate the defects of all-inorganic perovskite, namely, additive engineering, solvent engineering, interface modification, and the exploration of new charge transport materials (CTMs) for improving the phase stability and PCE of AIWPSCs. Finally, a conclusive outlook on AIWPSCs will be given to provide our perspectives aiming to inspire the further development of AIWPSCs.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全无机过氧化物太阳能电池:改性策略与挑战
铯基全无机宽带隙包晶太阳能电池(AIWPSCs)已被证明具有优异的光电特性,例如本征光学宽带隙和高热稳定性,这使它们成为串联太阳能电池(TSCs)前子电池的合适候选材料。由于全无机包晶总是存在相杂质、高缺陷密度和不均匀形貌等非理想结晶问题,因此包晶表面和界面的钝化是该领域共同关心的问题。尽管存在这些缺陷,但近年来人们仍致力于研究高性能的 AIWPSC,其功率转换效率(PCE)从 2.9% 突然提高到 21.0% 以上。鉴于没有对 AIWPSC 的进展进行全面总结,本文将对 AIWPSC 的最新器件性能进展进行全面综述,尤其是重点介绍钝化全无机过氧化物缺陷的策略,即添加剂工程、溶剂工程、界面改性,以及探索新型电荷传输材料 (CTM),以提高 AIWPSC 的相稳定性和 PCE。最后,将对 AIWPSC 进行总结性展望,提出我们的观点,以激励 AIWPSC 的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.20
自引率
3.40%
发文量
0
期刊介绍: Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields. In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including: CAS: Chemical Abstracts Service (ACS) Directory of Open Access Journals (DOAJ) Emerging Sources Citation Index (Clarivate Analytics) INSPEC (IET) Web of Science (Clarivate Analytics).
期刊最新文献
Masthead Striking a Balance: Decentralized and Centralized Wastewater Treatment Systems for Advancing Sustainable Development Goal 6 The Influence of Discontinuity-Induced Fringing Effect on the Output Performance of Contact-Separation Mode Triboelectric Nanogenerators: Experiment and Modeling Studies Masthead Enabling Aqueous Processing of Ni-Rich Layered Oxide Cathodes via Systematic Modification of Biopolymer (Polysaccharide)-Based Binders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1