Kezhi Lu, Qian Zhang, Danny Hughes, Guangquan Zhang, Jie Lu
{"title":"AMT-CDR: A Deep Adversarial Multi-channel Transfer Network for Cross-domain Recommendation","authors":"Kezhi Lu, Qian Zhang, Danny Hughes, Guangquan Zhang, Jie Lu","doi":"10.1145/3641286","DOIUrl":null,"url":null,"abstract":"<p>Recommender systems are one of the most successful applications of using AI for providing personalized e-services to customers. However, data sparsity is presenting enormous challenges that are hindering the further development of advanced recommender systems. Although cross-domain recommendation partly overcomes data sparsity by transferring knowledge from a source domain with relatively dense data to augment data in the target domain, the current methods do not handle heterogeneous data very well. For example, using today’s cross-domain transfer learning schemes with data comprising clicks, ratings, user reviews, item meta data, and knowledge graphs will likely result in a poorly-performing model. User preferences will not be comprehensively profiled, and accurate recommendations will not be generated. To solve these three challenges – i.e., handling heterogeneous data, avoiding negative transfer, and dealing with data sparsity – we designed a new end-to-end deep <b>a</b>dversarial <b>m</b>ulti-channel <b>t</b>ransfer network for <b>c</b>ross-<b>d</b>omain <b>r</b>ecommendation named AMT-CDR. Heterogeneous data is handled by constructing a cross-domain graph based on real-world knowledge graphs – we used Freebase and YAGO. Negative transfer is prevented through an adversarial learning strategy that maintains consistency across the different data channels. And data sparsity is addressed with an end-to-end neural network that considers data across multiple channels and generates accurate recommendations by leveraging knowledge from both the source and target domains. Extensive experiments on three dual-target cross-domain recommendation tasks demonstrate the superiority of AMT-CDR compared to eight state-of-the-art methods. All source code is available at https://github.com/bjtu-lucas-nlp/AMT-CDR.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"324 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3641286","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recommender systems are one of the most successful applications of using AI for providing personalized e-services to customers. However, data sparsity is presenting enormous challenges that are hindering the further development of advanced recommender systems. Although cross-domain recommendation partly overcomes data sparsity by transferring knowledge from a source domain with relatively dense data to augment data in the target domain, the current methods do not handle heterogeneous data very well. For example, using today’s cross-domain transfer learning schemes with data comprising clicks, ratings, user reviews, item meta data, and knowledge graphs will likely result in a poorly-performing model. User preferences will not be comprehensively profiled, and accurate recommendations will not be generated. To solve these three challenges – i.e., handling heterogeneous data, avoiding negative transfer, and dealing with data sparsity – we designed a new end-to-end deep adversarial multi-channel transfer network for cross-domain recommendation named AMT-CDR. Heterogeneous data is handled by constructing a cross-domain graph based on real-world knowledge graphs – we used Freebase and YAGO. Negative transfer is prevented through an adversarial learning strategy that maintains consistency across the different data channels. And data sparsity is addressed with an end-to-end neural network that considers data across multiple channels and generates accurate recommendations by leveraging knowledge from both the source and target domains. Extensive experiments on three dual-target cross-domain recommendation tasks demonstrate the superiority of AMT-CDR compared to eight state-of-the-art methods. All source code is available at https://github.com/bjtu-lucas-nlp/AMT-CDR.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.