首页 > 最新文献

ACM Transactions on Intelligent Systems and Technology最新文献

英文 中文
Aspect-enhanced Explainable Recommendation with Multi-modal Contrastive Learning 通过多模态对比学习增强可解释推荐功能
IF 5 4区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-19 DOI: 10.1145/3673234
Hao Liao, Shuo Wang, Hao Cheng, Wei Zhang, Jiwei Zhang, Mingyang Zhou, Kezhong Lu, Rui Mao, Xing Xie

Explainable recommender systems (ERS) aim to enhance users’ trust in the systems by offering personalized recommendations with transparent explanations. This transparency provides users with a clear understanding of the rationale behind the recommendations, fostering a sense of confidence and reliability in the system’s outputs. Generally, the explanations are presented in a familiar and intuitive way, which is in the form of natural language, thus enhancing their accessibility to users. Recently, there has been an increasing focus on leveraging reviews as a valuable source of rich information in both modeling user-item preferences and generating textual interpretations, which can be performed simultaneously in a multi-task framework. Despite the progress made in these review-based recommendation systems, the integration of implicit feedback derived from user-item interactions and user-written text reviews has yet to be fully explored. To fill this gap, we propose a model named SERMON (Aspect-enhanced Explainable Recommendation with Multi-modal Contrast Learning). Our model explores the application of multimodal contrastive learning to facilitate reciprocal learning across two modalities, thereby enhancing the modeling of user preferences. Moreover, our model incorporates the aspect information extracted from the review, which provides two significant enhancements to our tasks. Firstly, the quality of the generated explanations is improved by incorporating the aspect characteristics into the explanations generated by a pre-trained model with controlled textual generation ability. Secondly, the commonly used user-item interactions are transformed into user-item-aspect interactions, which we refer to as interaction triple, resulting in a more nuanced representation of user preference. To validate the effectiveness of our model, we conduct extensive experiments on three real-world datasets. The experimental results show that our model outperforms state-of-the-art baselines, with a 2.0% improvement in prediction accuracy and a substantial 24.5% enhancement in explanation quality for the TripAdvisor dataset.

可解释推荐系统(ERS)旨在通过提供带有透明解释的个性化推荐,增强用户对系统的信任。这种透明度能让用户清楚地了解推荐背后的理由,从而增强用户对系统输出结果的信任感和可靠性。一般来说,解释都是以用户熟悉和直观的方式,即自然语言的形式呈现的,从而增强了用户的可访问性。最近,越来越多的人开始关注利用评论作为丰富信息的宝贵来源,为用户物品偏好建模并生成文本解释,这些工作可以在多任务框架中同时进行。尽管这些基于评论的推荐系统取得了进展,但对来自用户-物品交互的隐式反馈和用户撰写的文本评论的整合仍有待充分探索。为了填补这一空白,我们提出了一个名为 SERMON(多模态对比学习的方面增强可解释推荐)的模型。我们的模型探索了多模态对比学习的应用,以促进两种模态之间的互惠学习,从而增强对用户偏好的建模。此外,我们的模型还纳入了从评论中提取的方面信息,这为我们的任务提供了两个重大改进。首先,通过将方面特征纳入由具有可控文本生成能力的预训练模型生成的解释中,提高了生成解释的质量。其次,常用的用户-物品交互被转化为用户-物品-方面交互,我们称之为交互三重,从而更细致地反映了用户的偏好。为了验证我们模型的有效性,我们在三个真实世界的数据集上进行了广泛的实验。实验结果表明,我们的模型优于最先进的基线模型,在 TripAdvisor 数据集上,预测准确率提高了 2.0%,解释质量大幅提高了 24.5%。
{"title":"Aspect-enhanced Explainable Recommendation with Multi-modal Contrastive Learning","authors":"Hao Liao, Shuo Wang, Hao Cheng, Wei Zhang, Jiwei Zhang, Mingyang Zhou, Kezhong Lu, Rui Mao, Xing Xie","doi":"10.1145/3673234","DOIUrl":"https://doi.org/10.1145/3673234","url":null,"abstract":"<p>Explainable recommender systems (<b>ERS</b>) aim to enhance users’ trust in the systems by offering personalized recommendations with transparent explanations. This transparency provides users with a clear understanding of the rationale behind the recommendations, fostering a sense of confidence and reliability in the system’s outputs. Generally, the explanations are presented in a familiar and intuitive way, which is in the form of natural language, thus enhancing their accessibility to users. Recently, there has been an increasing focus on leveraging reviews as a valuable source of rich information in both modeling user-item preferences and generating textual interpretations, which can be performed simultaneously in a multi-task framework. Despite the progress made in these review-based recommendation systems, the integration of implicit feedback derived from user-item interactions and user-written text reviews has yet to be fully explored. To fill this gap, we propose a model named <b>SERMON</b> (A<b><underline>s</underline></b>pect-enhanced <b><underline>E</underline></b>xplainable <b><underline>R</underline></b>ecommendation with <b><underline>M</underline></b>ulti-modal C<b><underline>o</underline></b>ntrast Lear<b><underline>n</underline></b>ing). Our model explores the application of multimodal contrastive learning to facilitate reciprocal learning across two modalities, thereby enhancing the modeling of user preferences. Moreover, our model incorporates the aspect information extracted from the review, which provides two significant enhancements to our tasks. Firstly, the quality of the generated explanations is improved by incorporating the aspect characteristics into the explanations generated by a pre-trained model with controlled textual generation ability. Secondly, the commonly used user-item interactions are transformed into user-item-aspect interactions, which we refer to as interaction triple, resulting in a more nuanced representation of user preference. To validate the effectiveness of our model, we conduct extensive experiments on three real-world datasets. The experimental results show that our model outperforms state-of-the-art baselines, with a 2.0% improvement in prediction accuracy and a substantial 24.5% enhancement in explanation quality for the TripAdvisor dataset.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"114 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explaining Neural News Recommendation with Attributions onto Reading Histories 用阅读历史归因解释神经新闻推荐
IF 5 4区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-18 DOI: 10.1145/3673233
Lucas Möller, Sebastian Padó

An important aspect of responsible recommendation systems is the transparency of the prediction mechanisms. This is a general challenge for deep-learning-based systems such as the currently predominant neural news recommender architectures which are optimized to predict clicks by matching candidate news items against users’ reading histories. Such systems achieve state-of-the-art click-prediction performance, but the rationale for their decisions is difficult to assess. At the same time, the economic and societal impact of these systems makes such insights very much desirable.

In this paper, we ask the question to what extent the recommendations of current news recommender systems are actually based on content-related evidence from reading histories. We approach this question from an explainability perspective. Building on the concept of integrated gradients, we present a neural news recommender that can accurately attribute individual recommendations to news items and words in input reading histories while maintaining a top scoring click-prediction performance.

Using our method as a diagnostic tool, we find that: (a), a substantial number of users’ clicks on news are not explainable from reading histories, and many history-explainable items are actually skipped; (b), while many recommendations are based on content-related evidence in histories, for others the model does not attend to reasonable evidence, and recommendations stem from a spurious bias in user representations. Our code is publicly available1.

负责任的推荐系统的一个重要方面是预测机制的透明度。这是基于深度学习的系统面临的普遍挑战,例如目前占主导地位的神经新闻推荐架构,通过将候选新闻条目与用户的阅读历史相匹配来优化点击预测。这类系统实现了最先进的点击预测性能,但其决策的合理性却难以评估。在本文中,我们提出了这样一个问题:当前新闻推荐系统的推荐在多大程度上是基于阅读历史中与内容相关的证据。我们从可解释性的角度来探讨这个问题。在综合梯度概念的基础上,我们提出了一种神经新闻推荐器,它可以准确地将单个推荐归因于输入阅读历史中的新闻条目和单词,同时保持最高得分的点击预测性能:利用我们的方法作为诊断工具,我们发现:(a) 大量用户对新闻的点击无法从阅读历史中得到解释,许多可从历史中得到解释的项目实际上被跳过;(b) 尽管许多推荐基于历史中与内容相关的证据,但对于其他内容,模型并未关注合理的证据,推荐源于用户表征中的虚假偏差。我们的代码已公开发布1。
{"title":"Explaining Neural News Recommendation with Attributions onto Reading Histories","authors":"Lucas Möller, Sebastian Padó","doi":"10.1145/3673233","DOIUrl":"https://doi.org/10.1145/3673233","url":null,"abstract":"<p>An important aspect of responsible recommendation systems is the transparency of the prediction mechanisms. This is a general challenge for deep-learning-based systems such as the currently predominant neural news recommender architectures which are optimized to predict clicks by matching candidate news items against users’ reading histories. Such systems achieve state-of-the-art click-prediction performance, but the rationale for their decisions is difficult to assess. At the same time, the economic and societal impact of these systems makes such insights very much desirable.</p><p>In this paper, we ask the question to what extent the recommendations of current news recommender systems are actually based on content-related evidence from reading histories. We approach this question from an explainability perspective. Building on the concept of integrated gradients, we present a neural news recommender that can accurately attribute individual recommendations to news items and words in input reading histories while maintaining a top scoring click-prediction performance.</p><p>Using our method as a diagnostic tool, we find that: (a), a substantial number of users’ clicks on news are not explainable from reading histories, and many history-explainable items are actually skipped; (b), while many recommendations are based on content-related evidence in histories, for others the model does not attend to reasonable evidence, and recommendations stem from a spurious bias in user representations. Our code is publicly available<sup>1</sup>.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"145 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Social Cognition Ability Evaluation of LLMs: A Dynamic Gamified Assessment and Hierarchical Social Learning Measurement Approach 法律硕士的社会认知能力评估:动态游戏化评估和分层社会学习测量方法
IF 5 4区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-18 DOI: 10.1145/3673238
Qin Ni, Yangze Yu, Yiming Ma, Xin Lin, Ciping Deng, Tingjiang Wei, Mo Xuan

Large Language Model(LLM) has shown amazing abilities in reasoning tasks, theory of mind(ToM) has been tested in many studies as part of reasoning tasks, and social learning, which is closely related to theory of mind, are still lack of investigation. However, the test methods and materials make the test results unconvincing. We propose a dynamic gamified assessment(DGA) and hierarchical social learning measurement to test ToM and social learning capacities in LLMs. The test for ToM consists of five parts. First, we extract ToM tasks from ToM experiments and then design game rules to satisfy the ToM task requirement. After that, we design ToM questions to match the game’s rules and use these to generate test materials. Finally, we go through the above steps to test the model. To assess the social learning ability, we introduce a novel set of social rules (three in total). Experiment results demonstrate that, except GPT-4, LLMs performed poorly on the ToM test but showed a certain level of social learning ability in social learning measurement.

大语言模型(LLM)在推理任务中表现出了惊人的能力,心智理论(ToM)作为推理任务的一部分已在许多研究中进行了测试,而与心智理论密切相关的社会学习仍缺乏研究。然而,测试方法和材料使得测试结果缺乏说服力。我们提出了一种动态游戏化测评(DGA)和分层社会学习测评的方法来测试低年级学生的心智理论和社会学习能力。ToM 测试包括五个部分。首先,我们从 ToM 实验中提取 ToM 任务,然后设计游戏规则以满足 ToM 任务要求。然后,我们设计与游戏规则相匹配的 ToM 问题,并利用这些问题生成测试材料。最后,我们通过上述步骤对模型进行测试。为了评估社交学习能力,我们引入了一套新的社交规则(共三套)。实验结果表明,除 GPT-4 外,LLM 在 ToM 测试中表现较差,但在社会学习测量中表现出一定的社会学习能力。
{"title":"The Social Cognition Ability Evaluation of LLMs: A Dynamic Gamified Assessment and Hierarchical Social Learning Measurement Approach","authors":"Qin Ni, Yangze Yu, Yiming Ma, Xin Lin, Ciping Deng, Tingjiang Wei, Mo Xuan","doi":"10.1145/3673238","DOIUrl":"https://doi.org/10.1145/3673238","url":null,"abstract":"<p>Large Language Model(LLM) has shown amazing abilities in reasoning tasks, theory of mind(ToM) has been tested in many studies as part of reasoning tasks, and social learning, which is closely related to theory of mind, are still lack of investigation. However, the test methods and materials make the test results unconvincing. We propose a dynamic gamified assessment(DGA) and hierarchical social learning measurement to test ToM and social learning capacities in LLMs. The test for ToM consists of five parts. First, we extract ToM tasks from ToM experiments and then design game rules to satisfy the ToM task requirement. After that, we design ToM questions to match the game’s rules and use these to generate test materials. Finally, we go through the above steps to test the model. To assess the social learning ability, we introduce a novel set of social rules (three in total). Experiment results demonstrate that, except GPT-4, LLMs performed poorly on the ToM test but showed a certain level of social learning ability in social learning measurement.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"90 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Misinformation Resilient Search Rankings with Webgraph-based Interventions 基于网络图干预的抗误导搜索排名
IF 5 4区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-06 DOI: 10.1145/3670410
Peter Carragher, Evan M. Williams, Kathleen M. Carley

The proliferation of unreliable news domains on the internet has had wide-reaching negative impacts on society. We introduce and evaluate interventions aimed at reducing traffic to unreliable news domains from search engines while maintaining traffic to reliable domains. We build these interventions on the principles of fairness (penalize sites for what is in their control), generality (label/fact-check agnostic), targeted (increase the cost of adversarial behavior), and scalability (works at webscale). We refine our methods on small-scale webdata as a testbed and then generalize the interventions to a large-scale webgraph containing 93.9M domains and 1.6B edges. We demonstrate that our methods penalize unreliable domains far more than reliable domains in both settings and we explore multiple avenues to mitigate unintended effects on both the small-scale and large-scale webgraph experiments. These results indicate the potential of our approach to reduce the spread of misinformation and foster a more reliable online information ecosystem. This research contributes to the development of targeted strategies to enhance the trustworthiness and quality of search engine results, ultimately benefiting users and the broader digital community.

互联网上不可靠新闻域的扩散对社会产生了广泛的负面影响。我们引入并评估了干预措施,旨在减少搜索引擎对不可靠新闻域的流量,同时保持对可靠域的流量。我们的干预措施基于以下原则:公平性(对网站可控的行为进行惩罚)、通用性(标签/事实检查不可知论)、针对性(增加对抗行为的成本)和可扩展性(在网络范围内有效)。我们将小规模网络数据作为测试平台,完善了我们的方法,然后将干预措施推广到包含 9390 万个域和 16 亿条边的大规模网络图。我们证明,在这两种情况下,我们的方法对不可靠域的惩罚远大于对可靠域的惩罚,我们还探索了多种途径来减轻小规模和大规模网络图实验中的意外影响。这些结果表明,我们的方法具有减少错误信息传播和促进更可靠的在线信息生态系统的潜力。这项研究有助于开发有针对性的策略,提高搜索引擎结果的可信度和质量,最终使用户和更广泛的数字社区受益。
{"title":"Misinformation Resilient Search Rankings with Webgraph-based Interventions","authors":"Peter Carragher, Evan M. Williams, Kathleen M. Carley","doi":"10.1145/3670410","DOIUrl":"https://doi.org/10.1145/3670410","url":null,"abstract":"<p>The proliferation of unreliable news domains on the internet has had wide-reaching negative impacts on society. We introduce and evaluate interventions aimed at reducing traffic to unreliable news domains from search engines while maintaining traffic to reliable domains. We build these interventions on the principles of fairness (penalize sites for what is in their control), generality (label/fact-check agnostic), targeted (increase the cost of adversarial behavior), and scalability (works at webscale). We refine our methods on small-scale webdata as a testbed and then generalize the interventions to a large-scale webgraph containing 93.9M domains and 1.6B edges. We demonstrate that our methods penalize unreliable domains far more than reliable domains in both settings and we explore multiple avenues to mitigate unintended effects on both the small-scale and large-scale webgraph experiments. These results indicate the potential of our approach to reduce the spread of misinformation and foster a more reliable online information ecosystem. This research contributes to the development of targeted strategies to enhance the trustworthiness and quality of search engine results, ultimately benefiting users and the broader digital community.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"26 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Privacy-Preserving and Diversity-Aware Trust-based Team Formation in Online Social Networks 在线社交网络中基于信任的隐私保护和多样性意识团队组建
IF 5 4区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-05 DOI: 10.1145/3670411
Yash Mahajan, Jin-Hee Cho, Ing-Ray Chen

As online social networks (OSNs) become more prevalent, a new paradigm for problem-solving through crowd-sourcing has emerged. By leveraging the OSN platforms, users can post a problem to be solved and then form a team to collaborate and solve the problem. A common concern in OSNs is how to form effective collaborative teams, as various tasks are completed through online collaborative networks. A team’s diversity in expertise has received high attention to producing high team performance in developing team formation (TF) algorithms. However, the effect of team diversity on performance under different types of tasks has not been extensively studied. Another important issue is how to balance the need to preserve individuals’ privacy with the need to maximize performance through active collaboration, as these two goals may conflict with each other. This research has not been actively studied in the literature. In this work, we develop a team formation (TF) algorithm in the context of OSNs that can maximize team performance and preserve team members’ privacy under different types of tasks. Our proposed PRivAcy-Diversity-Aware Team Formation framework, called PRADA-TF, is based on trust relationships between users in OSNs where trust is measured based on a user’s expertise and privacy preference levels. The PRADA-TF algorithm considers the team members’ domain expertise, privacy preferences, and the team’s expertise diversity in the process of team formation. Our approach employs game-theoretic principles Mechanism Design to motivate self-interested individuals within a team formation context, positioning the mechanism designer as the pivotal team leader responsible for assembling the team. We use two real-world datasets (i.e., Netscience and IMDb) to generate different semi-synthetic datasets for constructing trust networks using a belief model (i.e., Subjective Logic) and identifying trustworthy users as candidate team members. We evaluate the effectiveness of our proposed PRADA-TF scheme in four variants against three baseline methods in the literature. Our analysis focuses on three performance metrics for studying OSNs: social welfare, privacy loss, and team diversity.

随着在线社交网络(OSN)的日益普及,出现了一种通过众包解决问题的新模式。通过利用 OSN 平台,用户可以发布需要解决的问题,然后组成团队协作解决问题。由于各种任务都是通过在线协作网络完成的,因此如何组建有效的协作团队是 OSN 的一个共同关注点。在开发团队组建(TF)算法的过程中,团队专业知识的多样性对提高团队绩效的作用受到了高度关注。然而,团队多样性对不同类型任务下绩效的影响尚未得到广泛研究。另一个重要问题是,如何在保护个人隐私与通过积极协作最大化绩效之间取得平衡,因为这两个目标可能会相互冲突。这方面的研究在文献中还没有得到积极的探讨。在这项工作中,我们在 OSN 的背景下开发了一种团队组建(TF)算法,它可以在不同类型的任务下最大限度地提高团队绩效并保护团队成员的隐私。我们提出的 PRivAcy-Diversity-Aware 团队组建框架被称为 PRADA-TF,它基于 OSNs 中用户之间的信任关系,其中信任度是根据用户的专业知识和隐私偏好水平来衡量的。PRADA-TF 算法在组建团队的过程中考虑了团队成员的领域专长、隐私偏好和团队的专长多样性。我们的方法采用了博弈论原理--机制设计(Mechanism Design)来激励团队组建背景下的自利个体,并将机制设计者定位为负责组建团队的关键团队领导者。我们使用两个真实世界的数据集(即 Netscience 和 IMDb)来生成不同的半合成数据集,以便使用信念模型(即主观逻辑)构建信任网络,并将值得信赖的用户识别为候选团队成员。对照文献中的三种基准方法,我们评估了我们提出的 PRADA-TF 方案的四种变体的有效性。我们的分析侧重于研究 OSN 的三个性能指标:社会福利、隐私损失和团队多样性。
{"title":"Privacy-Preserving and Diversity-Aware Trust-based Team Formation in Online Social Networks","authors":"Yash Mahajan, Jin-Hee Cho, Ing-Ray Chen","doi":"10.1145/3670411","DOIUrl":"https://doi.org/10.1145/3670411","url":null,"abstract":"<p>As online social networks (OSNs) become more prevalent, a new paradigm for problem-solving through crowd-sourcing has emerged. By leveraging the OSN platforms, users can post a problem to be solved and then form a team to collaborate and solve the problem. A common concern in OSNs is how to form effective collaborative teams, as various tasks are completed through online collaborative networks. A team’s diversity in expertise has received high attention to producing high team performance in developing team formation (TF) algorithms. However, the effect of team diversity on performance under different types of tasks has not been extensively studied. Another important issue is how to balance the need to preserve individuals’ privacy with the need to maximize performance through active collaboration, as these two goals may conflict with each other. This research has not been actively studied in the literature. In this work, we develop a team formation (TF) algorithm in the context of OSNs that can maximize team performance and preserve team members’ privacy under different types of tasks. Our proposed <underline>PR</underline>iv<underline>A</underline>cy-<underline>D</underline>iversity-<underline>A</underline>ware <underline>T</underline>eam <underline>F</underline>ormation framework, called <monospace>PRADA-TF</monospace>, is based on trust relationships between users in OSNs where trust is measured based on a user’s expertise and privacy preference levels. The PRADA-TF algorithm considers the team members’ domain expertise, privacy preferences, and the team’s expertise diversity in the process of team formation. Our approach employs game-theoretic principles <i>Mechanism Design</i> to motivate self-interested individuals within a team formation context, positioning the mechanism designer as the pivotal team leader responsible for assembling the team. We use two real-world datasets (i.e., Netscience and IMDb) to generate different semi-synthetic datasets for constructing trust networks using a belief model (i.e., Subjective Logic) and identifying trustworthy users as candidate team members. We evaluate the effectiveness of our proposed <monospace>PRADA-TF</monospace> scheme in four variants against three baseline methods in the literature. Our analysis focuses on three performance metrics for studying OSNs: social welfare, privacy loss, and team diversity.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"8 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ranking the Transferability of Adversarial Examples 对对抗性实例的可转移性进行排序
IF 5 4区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-05 DOI: 10.1145/3670409
Moshe Levy, Guy Amit, Yuval Elovici, Yisroel Mirsky

Adversarial transferability in blackbox scenarios presents a unique challenge: while attackers can employ surrogate models to craft adversarial examples, they lack assurance on whether these examples will successfully compromise the target model. Until now, the prevalent method to ascertain success has been trial and error—testing crafted samples directly on the victim model. This approach, however, risks detection with every attempt, forcing attackers to either perfect their first try or face exposure.

Our paper introduces a ranking strategy that refines the transfer attack process, enabling the attacker to estimate the likelihood of success without repeated trials on the victim’s system. By leveraging a set of diverse surrogate models, our method can predict transferability of adversarial examples. This strategy can be used to either select the best sample to use in an attack or the best perturbation to apply to a specific sample.

Using our strategy, we were able to raise the transferability of adversarial examples from a mere 20%—akin to random selection—up to near upper-bound levels, with some scenarios even witnessing a 100% success rate. This substantial improvement not only sheds light on the shared susceptibilities across diverse architectures but also demonstrates that attackers can forego the detectable trial-and-error tactics raising increasing the threat of surrogate-based attacks.

黑盒场景中的对抗可转移性提出了一个独特的挑战:虽然攻击者可以使用代理模型来制作对抗示例,但他们无法保证这些示例是否能成功入侵目标模型。到目前为止,确定成功与否的普遍方法是直接在受害者模型上测试制作的样本。然而,这种方法每次尝试都有被检测到的风险,迫使攻击者要么完善第一次尝试,要么面临暴露。我们的论文引入了一种排名策略,该策略完善了转移攻击过程,使攻击者无需在受害者系统上反复试验就能估计成功的可能性。通过利用一系列不同的代理模型,我们的方法可以预测敌对实例的可转移性。使用我们的策略,我们能够将对抗示例的可转移性从仅有 20%(相当于随机选择)提高到接近上限水平,某些场景的成功率甚至达到了 100%。这一重大改进不仅揭示了不同架构之间的共同易感性,还证明攻击者可以放弃可检测的试错策略,从而提高基于代理的攻击威胁。
{"title":"Ranking the Transferability of Adversarial Examples","authors":"Moshe Levy, Guy Amit, Yuval Elovici, Yisroel Mirsky","doi":"10.1145/3670409","DOIUrl":"https://doi.org/10.1145/3670409","url":null,"abstract":"<p>Adversarial transferability in blackbox scenarios presents a unique challenge: while attackers can employ surrogate models to craft adversarial examples, they lack assurance on whether these examples will successfully compromise the target model. Until now, the prevalent method to ascertain success has been trial and error—testing crafted samples directly on the victim model. This approach, however, risks detection with every attempt, forcing attackers to either perfect their first try or face exposure.</p><p>Our paper introduces a ranking strategy that refines the transfer attack process, enabling the attacker to estimate the likelihood of success without repeated trials on the victim’s system. By leveraging a set of diverse surrogate models, our method can predict transferability of adversarial examples. This strategy can be used to either select the best sample to use in an attack or the best perturbation to apply to a specific sample.</p><p>Using our strategy, we were able to raise the transferability of adversarial examples from a mere 20%—akin to random selection—up to near upper-bound levels, with some scenarios even witnessing a 100% success rate. This substantial improvement not only sheds light on the shared susceptibilities across diverse architectures but also demonstrates that attackers can forego the detectable trial-and-error tactics raising increasing the threat of surrogate-based attacks.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"71 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNSRF: Deep Network-based Semi-NMF Representation Framework DNSRF:基于深度网络的半 NMF 表示框架
IF 5 4区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-03 DOI: 10.1145/3670408
Dexian Wang, Tianrui Li, Ping Deng, Zhipeng Luo, Pengfei Zhang, Keyu Liu, Wei Huang

Representation learning is an important topic in machine learning, pattern recognition, and data mining research. Among many representation learning approaches, semi-nonnegative matrix factorization (SNMF) is a frequently-used one. However, a typical problem of SNMF is that usually there is no learning rate guidance during the optimization process, which often leads to a poor representation ability. To overcome this limitation, we propose a very general representation learning framework (DNSRF) that is based on deep neural net. Essentially, the parameters of the deep net used to construct the DNSRF algorithms are obtained by matrix element update. In combination with different activation functions, DNSRF can be implemented in various ways. In our experiments, we tested nine instances of our DNSRF framework on six benchmark datasets. In comparison with other state-of-the-art methods, the results demonstrate superior performance of our framework, which is thus shown to have a great representation ability.

表示学习是机器学习、模式识别和数据挖掘研究中的一个重要课题。在众多表示学习方法中,半负矩阵因式分解(SNMF)是一种常用的方法。然而,SNMF 的一个典型问题是在优化过程中通常没有学习率的指导,这往往会导致表示能力较差。为了克服这一局限,我们提出了一种基于深度神经网络的通用表示学习框架(DNSRF)。从本质上讲,用于构建 DNSRF 算法的深度网参数是通过矩阵元素更新获得的。结合不同的激活函数,DNSRF 可以以多种方式实现。在实验中,我们在六个基准数据集上测试了 DNSRF 框架的九个实例。与其他最先进的方法相比,结果表明我们的框架性能优越,因此具有很强的表示能力。
{"title":"DNSRF: Deep Network-based Semi-NMF Representation Framework","authors":"Dexian Wang, Tianrui Li, Ping Deng, Zhipeng Luo, Pengfei Zhang, Keyu Liu, Wei Huang","doi":"10.1145/3670408","DOIUrl":"https://doi.org/10.1145/3670408","url":null,"abstract":"<p>Representation learning is an important topic in machine learning, pattern recognition, and data mining research. Among many representation learning approaches, semi-nonnegative matrix factorization (SNMF) is a frequently-used one. However, a typical problem of SNMF is that usually there is no learning rate guidance during the optimization process, which often leads to a poor representation ability. To overcome this limitation, we propose a very general representation learning framework (DNSRF) that is based on deep neural net. Essentially, the parameters of the deep net used to construct the DNSRF algorithms are obtained by matrix element update. In combination with different activation functions, DNSRF can be implemented in various ways. In our experiments, we tested nine instances of our DNSRF framework on six benchmark datasets. In comparison with other state-of-the-art methods, the results demonstrate superior performance of our framework, which is thus shown to have a great representation ability.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"53 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Faithfulness and Factuality with Contrastive Learning in Explainable Recommendation 在可解释的推荐中通过对比学习提高忠实性和事实性
IF 5 4区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-25 DOI: 10.1145/3653984
Haojie Zhuang, Wei Zhang, Weitong Chen, Jian Yang, Quan Z. Sheng

Recommender systems have become increasingly important in navigating the vast amount of information and options available in various domains. By tailoring and personalizing recommendations to user preferences and interests, these systems improve the user experience, efficiency and satisfaction. With a growing demand for transparency and understanding of recommendation outputs, explainable recommender systems have gained growing attention in recent years. Additionally, as user reviews could be considered the rationales behind why the user likes (or dislikes) the products, generating informative and reliable reviews alongside recommendations has thus emerged as a research focus in explainable recommendation. However, the model-generated reviews might contain factual inconsistent contents (i.e., the hallucination issue), which would thus compromise the recommendation rationales. To address this issue, we propose a contrastive learning framework to improve the faithfulness and factuality in explainable recommendation in this paper. We further develop different strategies of generating positive and negative examples for contrastive learning, such as back-translation or synonym substitution for positive examples, and editing positive examples or utilizing model-generated texts for negative examples. Our proposed method optimizes the model to distinguish faithful explanations (i.e., positive examples) and unfaithful ones with factual errors (i.e., negative examples), which thus drives the model to generate faithful reviews as explanations while avoiding inconsistent contents. Extensive experiments and analysis on three benchmark datasets show that our proposed model outperforms other review generation baselines in faithfulness and factuality. In addition, the proposed contrastive learning component could be easily incorporated into other explainable recommender systems in a plug-and-play manner.

在浏览各领域的大量信息和选项时,推荐系统变得越来越重要。通过根据用户偏好和兴趣定制个性化推荐,这些系统可以改善用户体验,提高效率和满意度。随着人们对推荐结果的透明度和理解力的要求越来越高,可解释的推荐系统近年来受到越来越多的关注。此外,由于用户评论可被视为用户喜欢(或不喜欢)产品背后的理由,因此在推荐的同时生成信息丰富且可靠的评论已成为可解释推荐的研究重点。然而,模型生成的评论可能会包含与事实不符的内容(即幻觉问题),从而影响推荐的合理性。为了解决这个问题,我们在本文中提出了一个对比学习框架,以提高可解释推荐的忠实性和事实性。我们进一步开发了用于对比学习的生成正面和负面示例的不同策略,例如正面示例的回译或同义词替换,负面示例的编辑正面示例或利用模型生成的文本。我们提出的方法优化了模型,以区分忠实的解释(即正面例子)和有事实错误的不忠实解释(即负面例子),从而促使模型生成忠实的评论作为解释,同时避免不一致的内容。在三个基准数据集上进行的大量实验和分析表明,我们提出的模型在忠实性和事实性方面优于其他评论生成基线。此外,我们提出的对比学习组件可以即插即用的方式轻松地集成到其他可解释的推荐系统中。
{"title":"Improving Faithfulness and Factuality with Contrastive Learning in Explainable Recommendation","authors":"Haojie Zhuang, Wei Zhang, Weitong Chen, Jian Yang, Quan Z. Sheng","doi":"10.1145/3653984","DOIUrl":"https://doi.org/10.1145/3653984","url":null,"abstract":"<p>Recommender systems have become increasingly important in navigating the vast amount of information and options available in various domains. By tailoring and personalizing recommendations to user preferences and interests, these systems improve the user experience, efficiency and satisfaction. With a growing demand for transparency and understanding of recommendation outputs, explainable recommender systems have gained growing attention in recent years. Additionally, as user reviews could be considered the rationales behind why the user likes (or dislikes) the products, generating informative and reliable reviews alongside recommendations has thus emerged as a research focus in explainable recommendation. However, the model-generated reviews might contain factual inconsistent contents (i.e., the hallucination issue), which would thus compromise the recommendation rationales. To address this issue, we propose a contrastive learning framework to improve the faithfulness and factuality in explainable recommendation in this paper. We further develop different strategies of generating positive and negative examples for contrastive learning, such as back-translation or synonym substitution for positive examples, and editing positive examples or utilizing model-generated texts for negative examples. Our proposed method optimizes the model to distinguish faithful explanations (i.e., positive examples) and unfaithful ones with factual errors (i.e., negative examples), which thus drives the model to generate faithful reviews as explanations while avoiding inconsistent contents. Extensive experiments and analysis on three benchmark datasets show that our proposed model outperforms other review generation baselines in faithfulness and factuality. In addition, the proposed contrastive learning component could be easily incorporated into other explainable recommender systems in a plug-and-play manner.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"24 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141146457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Federated Social Recommendation Approach with Enhanced Hypergraph Neural Network 使用增强超图神经网络的联合社交推荐方法
IF 5 4区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-24 DOI: 10.1145/3665931
Hongliang Sun, Zhiying Tu, Dianbo Sui, Bolin Zhang, Xiaofei Xu

In recent years, the development of online social network platforms has led to increased research efforts in social recommendation systems. Unlike traditional recommendation systems, social recommendation systems utilize both user-item interactions and user-user social relations to recommend relevant items, taking into account social homophily and social influence. Graph neural network (GNN) based social recommendation methods have been proposed to model these item interactions and social relations effectively. However, existing GNN-based methods rely on centralized training, which raises privacy concerns and faces challenges in data collection due to regulations and privacy restrictions. Federated learning has emerged as a privacy-preserving alternative. Combining federated learning with GNN-based methods for social recommendation can leverage their respective advantages, but it also introduces new challenges: 1) existing federated recommendation systems often lack the capability to process heterogeneous data, such as user-item interactions and social relations; 2) due to the sparsity of data distributed across different clients, capturing the higher-order relationship information among users becomes challenging and is often overlooked by most federated recommendation systems. To overcome these challenges, we propose a federated social recommendation approach with enhanced hypergraph neural network. We introduce hypergraph graph neural networks (HGNN) to learn user and item embeddings in federated recommendation systems, leveraging the hypergraph structure to address the heterogeneity of data. Based on carefully crafted triangular motifs, we merge user and item nodes to construct hypergraphs on local clients, capturing specific triangular relations. Multiple HGNN channels are used to encode different categories of high-order relations, and an attention mechanism is applied to aggregate the embedded information from these channels. Our experiments on real-world social recommendation datasets demonstrate the effectiveness of the proposed approach. Extensive experiment results on three publicly available datasets validate the effectiveness of the proposed method.

近年来,随着在线社交网络平台的发展,社交推荐系统的研究工作日益增多。与传统的推荐系统不同,社交推荐系统既利用用户与项目之间的互动,也利用用户与用户之间的社交关系来推荐相关项目,同时考虑到社交同质性和社交影响力。基于图神经网络(GNN)的社交推荐方法已被提出,以有效地模拟这些项目交互和社交关系。然而,现有的基于图神经网络的方法依赖于集中式训练,这会引发隐私问题,并且由于法规和隐私限制,在数据收集方面面临挑战。联盟学习作为一种保护隐私的替代方法应运而生。将联合学习与基于 GNN 的社交推荐方法相结合,可以发挥各自的优势,但也带来了新的挑战:1)现有的联合推荐系统往往缺乏处理异构数据的能力,如用户-项目交互和社会关系;2)由于分布在不同客户端的数据稀少,捕捉用户之间的高阶关系信息变得具有挑战性,而且往往被大多数联合推荐系统所忽视。为了克服这些挑战,我们提出了一种使用增强超图神经网络的联合社交推荐方法。我们引入超图神经网络(HGNN)来学习联合推荐系统中的用户和项目嵌入,利用超图结构来解决数据的异质性问题。基于精心制作的三角形图案,我们合并用户和项目节点,在本地客户端上构建超图,捕捉特定的三角形关系。我们使用多个 HGNN 通道来编码不同类别的高阶关系,并采用注意力机制来聚合这些通道中的嵌入信息。我们在真实世界社交推荐数据集上的实验证明了所提方法的有效性。在三个公开数据集上的广泛实验结果验证了所提方法的有效性。
{"title":"A Federated Social Recommendation Approach with Enhanced Hypergraph Neural Network","authors":"Hongliang Sun, Zhiying Tu, Dianbo Sui, Bolin Zhang, Xiaofei Xu","doi":"10.1145/3665931","DOIUrl":"https://doi.org/10.1145/3665931","url":null,"abstract":"<p>In recent years, the development of online social network platforms has led to increased research efforts in social recommendation systems. Unlike traditional recommendation systems, social recommendation systems utilize both user-item interactions and user-user social relations to recommend relevant items, taking into account social homophily and social influence. Graph neural network (GNN) based social recommendation methods have been proposed to model these item interactions and social relations effectively. However, existing GNN-based methods rely on centralized training, which raises privacy concerns and faces challenges in data collection due to regulations and privacy restrictions. Federated learning has emerged as a privacy-preserving alternative. Combining federated learning with GNN-based methods for social recommendation can leverage their respective advantages, but it also introduces new challenges: 1) existing federated recommendation systems often lack the capability to process heterogeneous data, such as user-item interactions and social relations; 2) due to the sparsity of data distributed across different clients, capturing the higher-order relationship information among users becomes challenging and is often overlooked by most federated recommendation systems. To overcome these challenges, we propose a federated social recommendation approach with enhanced hypergraph neural network. We introduce hypergraph graph neural networks (HGNN) to learn user and item embeddings in federated recommendation systems, leveraging the hypergraph structure to address the heterogeneity of data. Based on carefully crafted triangular motifs, we merge user and item nodes to construct hypergraphs on local clients, capturing specific triangular relations. Multiple HGNN channels are used to encode different categories of high-order relations, and an attention mechanism is applied to aggregate the embedded information from these channels. Our experiments on real-world social recommendation datasets demonstrate the effectiveness of the proposed approach. Extensive experiment results on three publicly available datasets validate the effectiveness of the proposed method.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"30 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141146469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fairness and Diversity in Recommender Systems: A Survey 推荐系统的公平性和多样性:调查
IF 5 4区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-21 DOI: 10.1145/3664928
Yuying Zhao, Yu Wang, Yunchao Liu, Xueqi Cheng, Charu C. Aggarwal, Tyler Derr

Recommender systems (RS) are effective tools for mitigating information overload and have seen extensive applications across various domains. However, the single focus on utility goals proves to be inadequate in addressing real-world concerns, leading to increasing attention to fairness-aware and diversity-aware RS. While most existing studies explore fairness and diversity independently, we identify strong connections between these two domains. In this survey, we first discuss each of them individually and then dive into their connections. Additionally, motivated by the concepts of user-level and item-level fairness, we broaden the understanding of diversity to encompass not only the item level but also the user level. With this expanded perspective on user and item-level diversity, we re-interpret fairness studies from the viewpoint of diversity. This fresh perspective enhances our understanding of fairness-related work and paves the way for potential future research directions. Papers discussed in this survey along with public code links are available at: https://github.com/YuyingZhao/Awesome-Fairness-and-Diversity-Papers-in-Recommender-Systems.

推荐系统(RS)是减轻信息过载的有效工具,已在各个领域得到广泛应用。然而,事实证明,只关注效用目标不足以解决现实世界中的问题,因此公平感知和多样性感知的推荐系统越来越受到关注。虽然现有的大多数研究都是单独探讨公平性和多样性的,但我们发现这两个领域之间存在紧密联系。在本调查中,我们首先单独讨论这两个领域,然后深入探讨它们之间的联系。此外,受用户层面和项目层面公平性概念的启发,我们拓宽了对多样性的理解,使其不仅包括项目层面,还包括用户层面。有了这种对用户和项目层面多样性的扩展视角,我们就能从多样性的角度重新诠释公平性研究。这种全新的视角增强了我们对公平性相关工作的理解,并为未来潜在的研究方向铺平了道路。本调查中讨论的论文以及公共代码链接可在以下网址获取:https://github.com/YuyingZhao/Awesome-Fairness-and-Diversity-Papers-in-Recommender-Systems。
{"title":"Fairness and Diversity in Recommender Systems: A Survey","authors":"Yuying Zhao, Yu Wang, Yunchao Liu, Xueqi Cheng, Charu C. Aggarwal, Tyler Derr","doi":"10.1145/3664928","DOIUrl":"https://doi.org/10.1145/3664928","url":null,"abstract":"<p>Recommender systems (RS) are effective tools for mitigating information overload and have seen extensive applications across various domains. However, the single focus on utility goals proves to be inadequate in addressing real-world concerns, leading to increasing attention to fairness-aware and diversity-aware RS. While most existing studies explore fairness and diversity independently, we identify strong connections between these two domains. In this survey, we first discuss each of them individually and then dive into their connections. Additionally, motivated by the concepts of user-level and item-level fairness, we broaden the understanding of diversity to encompass not only the item level but also the user level. With this expanded perspective on user and item-level diversity, we re-interpret fairness studies from the viewpoint of diversity. This fresh perspective enhances our understanding of fairness-related work and paves the way for potential future research directions. Papers discussed in this survey along with public code links are available at: https://github.com/YuyingZhao/Awesome-Fairness-and-Diversity-Papers-in-Recommender-Systems.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"32 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141146512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACM Transactions on Intelligent Systems and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1