Synergistic effect of new imidazoline derivative and 2-aminopyridine as corrosion inhibitors for Q235: Experimental and theoretical study

IF 1.6 4区 化学 Q4 CHEMISTRY, PHYSICAL Surface and Interface Analysis Pub Date : 2024-01-28 DOI:10.1002/sia.7286
Pengjie Wang, Lin Fan, Yuhao Song, Kuaihai Deng, Lei Guo, Zhonghui Li, Yuanhua Lin
{"title":"Synergistic effect of new imidazoline derivative and 2-aminopyridine as corrosion inhibitors for Q235: Experimental and theoretical study","authors":"Pengjie Wang, Lin Fan, Yuhao Song, Kuaihai Deng, Lei Guo, Zhonghui Li, Yuanhua Lin","doi":"10.1002/sia.7286","DOIUrl":null,"url":null,"abstract":"In order to reduce the investment of corrosion inhibitors, based on experimental and theoretical studies, the corrosion inhibition and mechanism of new imidazoline derivatives (SMIS) and 2-aminopyridine (AMP) were investigated carefully. The best corrosion inhibition effect was at 0.7-g/L SMIS and 0.3-g/L AMP, the corrosion inhibition efficiency of weight loss, electrochemical impedance spectroscopy, and potentiodynamic polarization (Tafel) were 90.54%, 98.56% and 97.68%, respectively. Electrochemical research shows that SMIS& belongs to cathodic corrosion inhibition. SMIS& mainly increased the film resistance and charge transfer resistance in 1-M HCl, thus playing a certain role in corrosion inhibition. X-ray photoelectron spectroscopy and energy dispersive spectrometer proved that SMIS& can be adsorbed on the surface of Q235, molecular dynamics showed that there was a certain synergy between SMIS and AMP. This study confirmed that SMIS and AMP have a good synergistic effect, improve the corrosion inhibition efficiency, reduce the synthesis cost of SMIS, and have a certain guiding significance for synergistic corrosion inhibition.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface and Interface Analysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7286","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to reduce the investment of corrosion inhibitors, based on experimental and theoretical studies, the corrosion inhibition and mechanism of new imidazoline derivatives (SMIS) and 2-aminopyridine (AMP) were investigated carefully. The best corrosion inhibition effect was at 0.7-g/L SMIS and 0.3-g/L AMP, the corrosion inhibition efficiency of weight loss, electrochemical impedance spectroscopy, and potentiodynamic polarization (Tafel) were 90.54%, 98.56% and 97.68%, respectively. Electrochemical research shows that SMIS& belongs to cathodic corrosion inhibition. SMIS& mainly increased the film resistance and charge transfer resistance in 1-M HCl, thus playing a certain role in corrosion inhibition. X-ray photoelectron spectroscopy and energy dispersive spectrometer proved that SMIS& can be adsorbed on the surface of Q235, molecular dynamics showed that there was a certain synergy between SMIS and AMP. This study confirmed that SMIS and AMP have a good synergistic effect, improve the corrosion inhibition efficiency, reduce the synthesis cost of SMIS, and have a certain guiding significance for synergistic corrosion inhibition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型咪唑啉衍生物和 2- 氨基吡啶作为 Q235 缓蚀剂的协同效应:实验和理论研究
为了减少缓蚀剂的投资,在实验和理论研究的基础上,对新型咪唑啉衍生物(SMIS)和2-氨基吡啶(AMP)的缓蚀作用和机理进行了细致的研究。0.7-g/L SMIS 和 0.3-g/L AMP 的缓蚀效果最好,失重、电化学阻抗谱和电位极化(Tafel)的缓蚀效率分别为 90.54%、98.56% 和 97.68%。电化学研究表明,SMIS& 属于阴极缓蚀剂。SMIS& 主要增加了 1-M HCl 中的膜电阻和电荷转移电阻,从而起到一定的缓蚀作用。X 射线光电子能谱和能量色散谱仪证明,SMIS&可吸附在 Q235 表面,分子动力学研究表明,SMIS 和 AMP 之间存在一定的协同作用。该研究证实了SMIS与AMP具有良好的协同效应,提高了缓蚀效率,降低了SMIS的合成成本,对协同缓蚀具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface and Interface Analysis
Surface and Interface Analysis 化学-物理化学
CiteScore
3.30
自引率
5.90%
发文量
130
审稿时长
4.4 months
期刊介绍: Surface and Interface Analysis is devoted to the publication of papers dealing with the development and application of techniques for the characterization of surfaces, interfaces and thin films. Papers dealing with standardization and quantification are particularly welcome, and also those which deal with the application of these techniques to industrial problems. Papers dealing with the purely theoretical aspects of the technique will also be considered. Review articles will be published; prior consultation with one of the Editors is advised in these cases. Papers must clearly be of scientific value in the field and will be submitted to two independent referees. Contributions must be in English and must not have been published elsewhere, and authors must agree not to communicate the same material for publication to any other journal. Authors are invited to submit their papers for publication to John Watts (UK only), Jose Sanz (Rest of Europe), John T. Grant (all non-European countries, except Japan) or R. Shimizu (Japan only).
期刊最新文献
Effect of Surface Dissolution on the Floatability of Brucite in Three Anionic Collector Systems Preparation and Properties of Mo/Ti/Sn Conductivity Conversion Coatings on 6063 Aluminum Alloy Nanosilicon Stabilized With Ligands: Effect of High‐Energy Proton Beam on Luminescent Properties Structural Analysis and Electrical Property of Acid‐Treated MWCNT Combined Experimental and Periodic DFT Study of the Size Dependence of Adsorption Properties of Oxide‐Supported Metal Nanoclusters: A Case of NO on Ni/Al2O3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1