Temperature Compensation through Kinetic Regulation in Biochemical Oscillators

Haochen Fu, Chenyi Fei, Qi Ouyang, Yuhai Tu
{"title":"Temperature Compensation through Kinetic Regulation in Biochemical Oscillators","authors":"Haochen Fu, Chenyi Fei, Qi Ouyang, Yuhai Tu","doi":"arxiv-2401.13960","DOIUrl":null,"url":null,"abstract":"Nearly all circadian clocks maintain a period that is insensitive to\ntemperature changes, a phenomenon known as temperature compensation (TC). Yet,\nit is unclear whether there is any common feature among different systems that\nexhibit TC. From a general timescale invariance, we show that TC relies on\nexistence of certain period-lengthening reactions wherein the period of the\nsystem increases strongly with the rates in these reactions. By studying\nseveral generic oscillator models, we show that this counter-intuitive\ndependence is nonetheless a common feature of oscillators in the nonlinear\n(far-from-onset) regime where the oscillation can be separated into fast and\nslow phases. The increase of the period with the period-lengthening reaction\nrates occurs when the amplitude of the slow phase in the oscillation increases\nwith these rates while the progression-speed in the slow phase is controlled by\nother rates of the system. The positive dependence of the period on the\nperiod-lengthening rates balances its inverse dependence on other kinetic rates\nin the system, which gives rise to robust TC in a wide range of parameters. We\ndemonstrate the existence of such period-lengthening reactions and their\nrelevance for TC in all four model systems we considered. Theoretical results\nfor a model of the Kai system are supported by experimental data. A study of\nthe energy dissipation also shows that better TC performance requires higher\nenergy consumption. Our study unveils a general mechanism by which a\nbiochemical oscillator achieves TC by operating at regimes far from the onset\nwhere period-lengthening reactions exist.","PeriodicalId":501325,"journal":{"name":"arXiv - QuanBio - Molecular Networks","volume":"156 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Molecular Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.13960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nearly all circadian clocks maintain a period that is insensitive to temperature changes, a phenomenon known as temperature compensation (TC). Yet, it is unclear whether there is any common feature among different systems that exhibit TC. From a general timescale invariance, we show that TC relies on existence of certain period-lengthening reactions wherein the period of the system increases strongly with the rates in these reactions. By studying several generic oscillator models, we show that this counter-intuitive dependence is nonetheless a common feature of oscillators in the nonlinear (far-from-onset) regime where the oscillation can be separated into fast and slow phases. The increase of the period with the period-lengthening reaction rates occurs when the amplitude of the slow phase in the oscillation increases with these rates while the progression-speed in the slow phase is controlled by other rates of the system. The positive dependence of the period on the period-lengthening rates balances its inverse dependence on other kinetic rates in the system, which gives rise to robust TC in a wide range of parameters. We demonstrate the existence of such period-lengthening reactions and their relevance for TC in all four model systems we considered. Theoretical results for a model of the Kai system are supported by experimental data. A study of the energy dissipation also shows that better TC performance requires higher energy consumption. Our study unveils a general mechanism by which a biochemical oscillator achieves TC by operating at regimes far from the onset where period-lengthening reactions exist.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过生化振荡器中的动力学调节进行温度补偿
几乎所有的昼夜节律钟都能保持一个对温度变化不敏感的周期,这种现象被称为温度补偿(TC)。然而,目前还不清楚不同系统之间是否存在表现出温度补偿的共同特征。从一般时标不变量出发,我们证明了温度补偿依赖于某些周期延长反应的存在,在这些反应中,系统的周期随着反应速率的增加而强烈增加。通过研究几种一般振荡器模型,我们发现这种反常的依赖性是非线性(远离起始点)振荡器的共同特征,在这种振荡器中,振荡可以分为快慢两个阶段。当振荡中慢相的振幅随着这些速率的增加而增加,而慢相的进速度受系统的其他速率控制时,周期就会随着周期延长反应速率的增加而增加。周期对周期延长速率的正向依赖性平衡了其对系统中其他动力学速率的反向依赖性,从而在广泛的参数范围内产生了稳健的 TC。我们证明了这种周期延长反应的存在,以及它们在我们所考虑的所有四个模型系统中与 TC 的相关性。实验数据支持了 Kai 系统模型的理论结果。对能量耗散的研究还表明,更好的热电偶性能需要更高的能量消耗。我们的研究揭示了一种普遍机制,即生化振荡器通过在远离周期延长反应存在的起始状态下运行来实现 TC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-variable control to mitigate loads in CRISPRa networks Some bounds on positive equilibria in mass action networks Non-explosivity of endotactic stochastic reaction systems Limits on the computational expressivity of non-equilibrium biophysical processes When lowering temperature, the in vivo circadian clock in cyanobacteria follows and surpasses the in vitro protein clock trough the Hopf bifurcation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1