When lowering temperature, the in vivo circadian clock in cyanobacteria follows and surpasses the in vitro protein clock trough the Hopf bifurcation

I. Mihalcescu, H. Kaji, H. Maruyama, J. Giraud, M. Van-Melle Gateau, B. Houchmandzadeh, H. Ito
{"title":"When lowering temperature, the in vivo circadian clock in cyanobacteria follows and surpasses the in vitro protein clock trough the Hopf bifurcation","authors":"I. Mihalcescu, H. Kaji, H. Maruyama, J. Giraud, M. Van-Melle Gateau, B. Houchmandzadeh, H. Ito","doi":"arxiv-2409.05537","DOIUrl":null,"url":null,"abstract":"The in vivo circadian clock in single cyanobacteria is studied here by\ntime-lapse fluorescence microscopy when the temperature is lowered below\n25{\\deg}C . We first disentangle the circadian clock behavior from the\nbacterial cold shock response by identifying a sequence of \"death steps\" based\non cellular indicators. By analyzing only \"alive\" tracks, we show that the\ndynamic response of individual oscillatory tracks to a step-down temperature\nsignal is described by a simple Stuart-Landau oscillator model. The same\ndynamical analysis applied to in vitro data (KaiC phosphorylation level\nfollowing a temperature step-down) allows for extracting and comparing both\nclock's responses to a temperature step down. It appears, therefore, that both\noscillators go through a similar supercritical Hopf bifurcation. Finally, to\nquantitatively describe the temperature dependence of the resulting in vivo and\nin vitro Stuart-Landau parameters $\\mu(T)$ and $\\omega_c(T)$, we propose two\nsimplified analytical models: temperature-dependent positive feedback or\ntime-delayed negative feedback that is temperature compensated. Our results\nprovide strong constraints for future models and emphasize the importance of\nstudying transitory regimes along temperature effects in circadian systems.","PeriodicalId":501325,"journal":{"name":"arXiv - QuanBio - Molecular Networks","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Molecular Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The in vivo circadian clock in single cyanobacteria is studied here by time-lapse fluorescence microscopy when the temperature is lowered below 25{\deg}C . We first disentangle the circadian clock behavior from the bacterial cold shock response by identifying a sequence of "death steps" based on cellular indicators. By analyzing only "alive" tracks, we show that the dynamic response of individual oscillatory tracks to a step-down temperature signal is described by a simple Stuart-Landau oscillator model. The same dynamical analysis applied to in vitro data (KaiC phosphorylation level following a temperature step-down) allows for extracting and comparing both clock's responses to a temperature step down. It appears, therefore, that both oscillators go through a similar supercritical Hopf bifurcation. Finally, to quantitatively describe the temperature dependence of the resulting in vivo and in vitro Stuart-Landau parameters $\mu(T)$ and $\omega_c(T)$, we propose two simplified analytical models: temperature-dependent positive feedback or time-delayed negative feedback that is temperature compensated. Our results provide strong constraints for future models and emphasize the importance of studying transitory regimes along temperature effects in circadian systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
当温度降低时,蓝藻体内的昼夜节律遵循并超越体外蛋白质时钟的霍普夫分岔曲线
本文通过延时荧光显微镜研究了温度降低到25{/deg}C以下时单体蓝藻的体内昼夜节律钟。我们首先根据细胞指标确定了一系列 "死亡步骤",从而将昼夜节律行为与细菌冷休克反应区分开来。通过只分析 "活着的 "轨道,我们发现单个振荡轨道对降温信号的动态响应可以用一个简单的斯图尔特-朗道振荡器模型来描述。对体外数据(温度骤降后的 KaiC 磷酸化水平)进行类似的动力学分析,可以提取和比较两种时钟对温度骤降的响应。因此,两个振荡器似乎都经历了类似的超临界霍普夫分岔。最后,为了定量描述体内和体外斯图尔特-朗道参数 $\mu(T)$ 和 $\omega_c(T)$ 的温度依赖性,我们提出了两个简化的分析模型:温度依赖性正反馈或温度补偿的时间延迟负反馈。我们的结果为未来的模型提供了强有力的约束,并强调了研究昼夜节律系统中温度效应的过渡态的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-variable control to mitigate loads in CRISPRa networks Some bounds on positive equilibria in mass action networks Non-explosivity of endotactic stochastic reaction systems Limits on the computational expressivity of non-equilibrium biophysical processes When lowering temperature, the in vivo circadian clock in cyanobacteria follows and surpasses the in vitro protein clock trough the Hopf bifurcation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1