Prediction of the Axial Bearing Compressive Capacities of CFST Columns Based on Machine Learning Methods

IF 1.1 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY International Journal of Steel Structures Pub Date : 2024-01-27 DOI:10.1007/s13296-023-00800-9
Yu Lusong, Zhang Yuxing, Wang Li, Pan Qiren, Wen Yiyang
{"title":"Prediction of the Axial Bearing Compressive Capacities of CFST Columns Based on Machine Learning Methods","authors":"Yu Lusong, Zhang Yuxing, Wang Li, Pan Qiren, Wen Yiyang","doi":"10.1007/s13296-023-00800-9","DOIUrl":null,"url":null,"abstract":"<p>Concrete-filled steel tubes (CFSTs) are widely used in engineering structures due to their excellent mechanical properties and economic benefits. This study focused on the construction of artificial neural network (ANN) models with high prediction capabilities and prediction accuracies that could predict the axial compression load capacities of short CFST columns using machine learning methods. A database was created by searching literature published over the past 40 years regarding circular-CFST bearing-capacity testing. Three ANN models with different input parameters were developed, and used the Whale Optimization Algorithm to optimize the network weights and thresholds, the core idea of which comes from the humpback whale's special bubble net attack method. Then, the predictions of the proposed machine learning models were also compared with the theoretical values produced by the formulas proposed in existing codes. The results show that the ANN models had higher accuracies and a wider application range than the existing code models. Based on the Garson's algorithm, we perform parameter sensitivity analysis on the network model to enhance the interpretability of the neural network model. Finally, a graphical user tool is built to make the strength of CFST can be predicted quickly.</p>","PeriodicalId":596,"journal":{"name":"International Journal of Steel Structures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Steel Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13296-023-00800-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Concrete-filled steel tubes (CFSTs) are widely used in engineering structures due to their excellent mechanical properties and economic benefits. This study focused on the construction of artificial neural network (ANN) models with high prediction capabilities and prediction accuracies that could predict the axial compression load capacities of short CFST columns using machine learning methods. A database was created by searching literature published over the past 40 years regarding circular-CFST bearing-capacity testing. Three ANN models with different input parameters were developed, and used the Whale Optimization Algorithm to optimize the network weights and thresholds, the core idea of which comes from the humpback whale's special bubble net attack method. Then, the predictions of the proposed machine learning models were also compared with the theoretical values produced by the formulas proposed in existing codes. The results show that the ANN models had higher accuracies and a wider application range than the existing code models. Based on the Garson's algorithm, we perform parameter sensitivity analysis on the network model to enhance the interpretability of the neural network model. Finally, a graphical user tool is built to make the strength of CFST can be predicted quickly.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习方法的 CFST 柱轴向承压能力预测
混凝土填充钢管(CFST)因其优异的机械性能和经济效益而被广泛应用于工程结构中。本研究的重点是构建具有高预测能力和预测精度的人工神经网络(ANN)模型,利用机器学习方法预测短 CFST 柱的轴向压缩承载能力。通过搜索过去 40 年出版的有关圆形 CFST 承载能力测试的文献,建立了一个数据库。开发了三个具有不同输入参数的 ANN 模型,并使用鲸鱼优化算法来优化网络权重和阈值,其核心思想来自座头鲸的特殊气泡网攻击方法。然后,还将所提出的机器学习模型的预测值与现有代码中提出的公式所产生的理论值进行了比较。结果表明,与现有的代码模型相比,ANN 模型具有更高的精确度和更广的应用范围。基于加森算法,我们对网络模型进行了参数敏感性分析,以增强神经网络模型的可解释性。最后,我们建立了一个图形用户工具,使 CFST 的强度可以快速预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Steel Structures
International Journal of Steel Structures 工程技术-工程:土木
CiteScore
2.70
自引率
13.30%
发文量
122
审稿时长
12 months
期刊介绍: The International Journal of Steel Structures provides an international forum for a broad classification of technical papers in steel structural research and its applications. The journal aims to reach not only researchers, but also practicing engineers. Coverage encompasses such topics as stability, fatigue, non-linear behavior, dynamics, reliability, fire, design codes, computer-aided analysis and design, optimization, expert systems, connections, fabrications, maintenance, bridges, off-shore structures, jetties, stadiums, transmission towers, marine vessels, storage tanks, pressure vessels, aerospace, and pipelines and more.
期刊最新文献
Numerical Analysis of Sectional Defective Steel Tube Repaired Using Multilayered CFRP Bonding Subjected to Axial Force or Bending Average Compressive Stress–Strain Curves of Steel Plates for Bridges Under Axial Longitudinal Compression Experimental and Numerical Study on Behaviors of Double-shear Four-Bolted Connection with Austenitic Stainless Steel Flexural Analysis of Elastically Supported Bidirectional Monel–Zirconia Skew FGM Plate Subjected to Line Load Using Meshless Collocation Technique Investigation of the Fracture Behavior of High-Strength Structural Steel and Welds based on Micromechanical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1