Quadratic Unconstrained Binary Optimization Approach for Incorporating Solvency Capital into Portfolio Optimization

IF 2 Q2 BUSINESS, FINANCE Risks Pub Date : 2024-01-29 DOI:10.3390/risks12020023
Ivica Turkalj, Mohammad Assadsolimani, Markus Braun, Pascal Halffmann, Niklas Hegemann, Sven Kerstan, Janik Maciejewski, Shivam Sharma, Yuanheng Zhou
{"title":"Quadratic Unconstrained Binary Optimization Approach for Incorporating Solvency Capital into Portfolio Optimization","authors":"Ivica Turkalj, Mohammad Assadsolimani, Markus Braun, Pascal Halffmann, Niklas Hegemann, Sven Kerstan, Janik Maciejewski, Shivam Sharma, Yuanheng Zhou","doi":"10.3390/risks12020023","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the inclusion of the solvency capital requirement (SCR) into portfolio optimization by the use of a quadratic proxy model. The Solvency II directive requires insurance companies to calculate their SCR based on the complete loss distribution for the upcoming year. Since this task is, in general, computationally challenging for insurance companies (and therefore, not taken into account during portfolio optimization), employing more feasible proxy models provides a potential solution to this computational difficulty. Here, we present an approach that is also suitable for future applications in quantum computing. We analyze the approximability of the solvency capital ratio in a quadratic form using machine learning techniques. This allows for an easier consideration of the SCR in the classical mean-variance analysis. In addition, it allows the problem to be formulated as a quadratic unconstrained binary optimization (QUBO), which benefits from the potential speedup of quantum computing. We provide a detailed description of our model and the translation into a QUBO. Furthermore, we investigate the performance of our approach through experimental studies.","PeriodicalId":21282,"journal":{"name":"Risks","volume":"3 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/risks12020023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the inclusion of the solvency capital requirement (SCR) into portfolio optimization by the use of a quadratic proxy model. The Solvency II directive requires insurance companies to calculate their SCR based on the complete loss distribution for the upcoming year. Since this task is, in general, computationally challenging for insurance companies (and therefore, not taken into account during portfolio optimization), employing more feasible proxy models provides a potential solution to this computational difficulty. Here, we present an approach that is also suitable for future applications in quantum computing. We analyze the approximability of the solvency capital ratio in a quadratic form using machine learning techniques. This allows for an easier consideration of the SCR in the classical mean-variance analysis. In addition, it allows the problem to be formulated as a quadratic unconstrained binary optimization (QUBO), which benefits from the potential speedup of quantum computing. We provide a detailed description of our model and the translation into a QUBO. Furthermore, we investigate the performance of our approach through experimental studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将偿付能力资本纳入投资组合优化的二次无约束二元优化方法
在本文中,我们考虑通过使用二次代理模型将偿付能力资本要求(SCR)纳入投资组合优化。偿付能力 II 指令要求保险公司根据下一年的完整损失分布计算偿付能力资本要求。一般来说,这项任务对保险公司来说具有计算上的挑战性(因此在优化投资组合时没有考虑到这一点),因此采用更可行的代理模型为这一计算困难提供了潜在的解决方案。在此,我们提出了一种同样适用于量子计算未来应用的方法。我们利用机器学习技术分析了偿付能力资本比率的二次方近似性。这使得在经典的均值方差分析中更容易考虑偿付能力资本比率。此外,它还允许将问题表述为二次无约束二元优化(QUBO),从而受益于量子计算可能带来的速度提升。我们详细描述了我们的模型以及将其转化为 QUBO 的过程。此外,我们还通过实验研究调查了我们方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Risks
Risks Economics, Econometrics and Finance-Economics, Econometrics and Finance (miscellaneous)
CiteScore
3.80
自引率
22.70%
发文量
205
审稿时长
11 weeks
期刊最新文献
Funding Illiquidity Implied by S&P 500 Derivatives Dynamics of Foreign Exchange Futures Trading Volumes in Thailand Automated Machine Learning and Asset Pricing What Drives Banks to Provide Green Loans? Corporate Governance and Ownership Structure Perspectives of Vietnamese Listed Banks Trends and Risks in Mergers and Acquisitions: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1