Automated Machine Learning and Asset Pricing

IF 2 Q2 BUSINESS, FINANCE Risks Pub Date : 2024-09-14 DOI:10.3390/risks12090148
Jerome V. Healy, Andros Gregoriou, Robert Hudson
{"title":"Automated Machine Learning and Asset Pricing","authors":"Jerome V. Healy, Andros Gregoriou, Robert Hudson","doi":"10.3390/risks12090148","DOIUrl":null,"url":null,"abstract":"We evaluate whether machine learning methods can better model excess portfolio returns compared to the standard regression-based strategies generally used in the finance and econometric literature. We examine 17 benchmark factor model specifications based on Expected Utility Theory and theory drawn from behavioural finance. We assess whether machine learning can identify features of the data-generating process undetected by standard methods and rank the best-performing algorithms. Our tests use 95 years of CRSP data, from 1926 to 2021, encompassing the price history of the broad US stock market. Our findings suggest that machine learning methods provide more accurate models of stock returns based on risk factors than standard regression-based methods of estimation. They also indicate that certain risk factors and combinations of risk factors may be more attractive when more appropriate account is taken of the non-linear properties of the underlying assets.","PeriodicalId":21282,"journal":{"name":"Risks","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/risks12090148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We evaluate whether machine learning methods can better model excess portfolio returns compared to the standard regression-based strategies generally used in the finance and econometric literature. We examine 17 benchmark factor model specifications based on Expected Utility Theory and theory drawn from behavioural finance. We assess whether machine learning can identify features of the data-generating process undetected by standard methods and rank the best-performing algorithms. Our tests use 95 years of CRSP data, from 1926 to 2021, encompassing the price history of the broad US stock market. Our findings suggest that machine learning methods provide more accurate models of stock returns based on risk factors than standard regression-based methods of estimation. They also indicate that certain risk factors and combinations of risk factors may be more attractive when more appropriate account is taken of the non-linear properties of the underlying assets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动化机器学习和资产定价
与金融和计量经济学文献中普遍使用的基于回归的标准策略相比,我们评估了机器学习方法是否能更好地模拟超额投资组合回报。我们研究了基于预期效用理论和行为金融理论的 17 种基准因子模型规格。我们评估了机器学习是否能识别标准方法未发现的数据生成过程特征,并对表现最佳的算法进行了排名。我们的测试使用了从 1926 年到 2021 年的 95 年 CRSP 数据,涵盖了整个美国股票市场的价格历史。我们的研究结果表明,与基于回归的标准估算方法相比,机器学习方法能根据风险因素提供更准确的股票回报模型。研究结果还表明,如果更适当地考虑相关资产的非线性特性,某些风险因素和风险因素组合可能更具吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Risks
Risks Economics, Econometrics and Finance-Economics, Econometrics and Finance (miscellaneous)
CiteScore
3.80
自引率
22.70%
发文量
205
审稿时长
11 weeks
期刊最新文献
Funding Illiquidity Implied by S&P 500 Derivatives Dynamics of Foreign Exchange Futures Trading Volumes in Thailand Automated Machine Learning and Asset Pricing What Drives Banks to Provide Green Loans? Corporate Governance and Ownership Structure Perspectives of Vietnamese Listed Banks Trends and Risks in Mergers and Acquisitions: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1