Ensemble-based history matching of the Edvard Grieg field using 4D seismic data

IF 2.1 3区 地球科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computational Geosciences Pub Date : 2024-01-27 DOI:10.1007/s10596-024-10275-0
Rolf J. Lorentzen, Tuhin Bhakta, Kristian Fossum, Jon André Haugen, Espen Oen Lie, Abel Onana Ndingwan, Knut Richard Straith
{"title":"Ensemble-based history matching of the Edvard Grieg field using 4D seismic data","authors":"Rolf J. Lorentzen, Tuhin Bhakta, Kristian Fossum, Jon André Haugen, Espen Oen Lie, Abel Onana Ndingwan, Knut Richard Straith","doi":"10.1007/s10596-024-10275-0","DOIUrl":null,"url":null,"abstract":"<p>The Edvard Grieg field is a highly complex and heterogeneous reservoir with an extensive fault structure and a mixture of sandstone, conglomerate, and shale. In this paper, we present a complete workflow for history matching the Edvard Grieg field using an ensemble smoother for Bayesian inference. An important aspect of the workflow is a methodology to check that the prior assumptions are suitable for assimilating the data, and procedures to verify that the posterior results are plausible and credible. We thoroughly describe several tools and visualization techniques for these purposes. Using these methods we show how to identify important parameters of the model. Furthermore, we utilize new compression methods for better handling large datasets. Simulating fluid flow and seismic response for reservoirs of this size and complexity requires high numerical resolution and accurate seismic models. We present a novel dual-model concept for a better representation of seismic data and attributes, that deploy different models for the underground depending on simulated properties. Results from history matching show that we can improve data matches for both production data and different seismic attributes. Updated parameters give new insight into the reservoir dynamics, and are calibrated to better represent water movement and pressure.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":"16 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10596-024-10275-0","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Edvard Grieg field is a highly complex and heterogeneous reservoir with an extensive fault structure and a mixture of sandstone, conglomerate, and shale. In this paper, we present a complete workflow for history matching the Edvard Grieg field using an ensemble smoother for Bayesian inference. An important aspect of the workflow is a methodology to check that the prior assumptions are suitable for assimilating the data, and procedures to verify that the posterior results are plausible and credible. We thoroughly describe several tools and visualization techniques for these purposes. Using these methods we show how to identify important parameters of the model. Furthermore, we utilize new compression methods for better handling large datasets. Simulating fluid flow and seismic response for reservoirs of this size and complexity requires high numerical resolution and accurate seismic models. We present a novel dual-model concept for a better representation of seismic data and attributes, that deploy different models for the underground depending on simulated properties. Results from history matching show that we can improve data matches for both production data and different seismic attributes. Updated parameters give new insight into the reservoir dynamics, and are calibrated to better represent water movement and pressure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用四维地震数据对埃德瓦德-格里格油气田进行基于集合的历史匹配
Edvard Grieg 油田是一个高度复杂的异质储层,具有广泛的断层构造,混合了砂岩、砾岩和页岩。在本文中,我们介绍了一套完整的工作流程,利用贝叶斯推断的集合平滑器对 Edvard Grieg 油田进行历史匹配。工作流程的一个重要方面是检查先验假设是否适合同化数据的方法,以及验证后验结果是否合理可信的程序。我们全面介绍了用于这些目的的几种工具和可视化技术。利用这些方法,我们展示了如何确定模型的重要参数。此外,我们还利用新的压缩方法来更好地处理大型数据集。模拟这种规模和复杂程度的储层的流体流动和地震响应需要高数值分辨率和精确的地震模型。我们提出了一种新颖的双模型概念,以更好地表示地震数据和属性,根据模拟属性为地下部署不同的模型。历史匹配的结果表明,我们可以改善生产数据和不同地震属性的数据匹配。更新后的参数使我们对储层动态有了新的认识,并通过校准更好地表现了水的运动和压力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Geosciences
Computational Geosciences 地学-地球科学综合
CiteScore
6.10
自引率
4.00%
发文量
63
审稿时长
6-12 weeks
期刊介绍: Computational Geosciences publishes high quality papers on mathematical modeling, simulation, numerical analysis, and other computational aspects of the geosciences. In particular the journal is focused on advanced numerical methods for the simulation of subsurface flow and transport, and associated aspects such as discretization, gridding, upscaling, optimization, data assimilation, uncertainty assessment, and high performance parallel and grid computing. Papers treating similar topics but with applications to other fields in the geosciences, such as geomechanics, geophysics, oceanography, or meteorology, will also be considered. The journal provides a platform for interaction and multidisciplinary collaboration among diverse scientific groups, from both academia and industry, which share an interest in developing mathematical models and efficient algorithms for solving them, such as mathematicians, engineers, chemists, physicists, and geoscientists.
期刊最新文献
High-order exponential integration for seismic wave modeling Incorporating spatial variability in surface runoff modeling with new DEM-based distributed approaches Towards practical artificial intelligence in Earth sciences Application of deep learning reduced-order modeling for single-phase flow in faulted porous media Application of supervised machine learning to assess and manage fluid-injection-induced seismicity hazards based on the Montney region of northeastern British Columbia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1