首页 > 最新文献

Computational Geosciences最新文献

英文 中文
Application of IDEAL algorithm based on the collocated unstructured grid for incompressible flows 基于非结构网格的 IDEAL 算法在不可压缩流中的应用
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-06-13 DOI: 10.1007/s10596-024-10296-9
Yujie Chen, K. Ling, Xiaoyu Zhang, Yue Xiang, Dongliang Sun, Bo Yu, Wei Zhang, Wen Tao
{"title":"Application of IDEAL algorithm based on the collocated unstructured grid for incompressible flows","authors":"Yujie Chen, K. Ling, Xiaoyu Zhang, Yue Xiang, Dongliang Sun, Bo Yu, Wei Zhang, Wen Tao","doi":"10.1007/s10596-024-10296-9","DOIUrl":"https://doi.org/10.1007/s10596-024-10296-9","url":null,"abstract":"","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141346842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiscale model diagnostics 多尺度模型诊断
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-05-28 DOI: 10.1007/s10596-024-10289-8
Trond Mannseth

I consider the problem of model diagnostics, that is, the problem of criticizing a model prior to history matching by comparing data to an ensemble of simulated data based on the prior model (prior predictions). If the data are not deemed as a credible prior prediction by the model diagnostics, some settings of the model should be changed before history matching is attempted. I particularly target methodologies that are computationally feasible for large models with large amounts of data. A multiscale methodology, that can be applied to analyze differences between data and prior predictions in a scale-by-scale fashion, is proposed for this purpose. The methodology is computationally inexpensive, straightforward to apply, and can handle correlated observation errors without making approximations. The multiscale methodology is tested on a set of toy models, on two simplistic reservoir models with synthetic data, and on real data and prior predictions from the Norne field. The tests include comparisons with a previously published method (termed the Mahalanobis methodology in this paper). For the Norne case, both methodologies led to the same decisions regarding whether to accept or discard the data as a credible prior prediction. The multiscale methodology led to correct decisions for the toy models and the simplistic reservoir models. For these models, the Mahalanobis methodology either led to incorrect decisions, and/or was unstable with respect to selection of the ensemble of prior predictions.

我考虑的是模型诊断问题,即在历史匹配之前,通过将数据与基于先验模型(先验预测)的模拟数据集合进行比较,对模型进行批评的问题。如果模型诊断认为数据不是可信的先验预测,那么在尝试历史匹配之前,就应该改变模型的某些设置。我的目标尤其是针对具有大量数据的大型模型的可行计算方法。为此,我提出了一种多尺度方法,可以逐个尺度分析数据与先验预测之间的差异。该方法计算成本低廉,应用简便,可处理相关的观测误差,无需进行近似。多尺度方法在一组玩具模型、两个带有合成数据的简单储层模型以及 Norne 油田的真实数据和先验预测上进行了测试。测试包括与之前发布的一种方法(本文称为 Mahalanobis 方法)进行比较。在诺恩案例中,两种方法在接受或放弃数据作为可信的先验预测方面做出了相同的决定。多尺度方法对玩具模型和简单储层模型做出了正确的决定。对于这些模型,Mahalanobis 方法要么导致错误的决策,要么在选择先验预测集合方面不稳定。
{"title":"Multiscale model diagnostics","authors":"Trond Mannseth","doi":"10.1007/s10596-024-10289-8","DOIUrl":"https://doi.org/10.1007/s10596-024-10289-8","url":null,"abstract":"<p>I consider the problem of model diagnostics, that is, the problem of criticizing a model prior to history matching by comparing data to an ensemble of simulated data based on the prior model (prior predictions). If the data are not deemed as a credible prior prediction by the model diagnostics, some settings of the model should be changed before history matching is attempted. I particularly target methodologies that are computationally feasible for large models with large amounts of data. A multiscale methodology, that can be applied to analyze differences between data and prior predictions in a scale-by-scale fashion, is proposed for this purpose. The methodology is computationally inexpensive, straightforward to apply, and can handle correlated observation errors without making approximations. The multiscale methodology is tested on a set of toy models, on two simplistic reservoir models with synthetic data, and on real data and prior predictions from the Norne field. The tests include comparisons with a previously published method (termed the Mahalanobis methodology in this paper). For the Norne case, both methodologies led to the same decisions regarding whether to accept or discard the data as a credible prior prediction. The multiscale methodology led to correct decisions for the toy models and the simplistic reservoir models. For these models, the Mahalanobis methodology either led to incorrect decisions, and/or was unstable with respect to selection of the ensemble of prior predictions.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141167756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitivity analysis of the MCRF model to different transiogram joint modeling methods for simulating categorical spatial variables 模拟分类空间变量的 MCRF 模型对不同跨图联合建模方法的敏感性分析
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-05-18 DOI: 10.1007/s10596-024-10294-x
Bo Zhang, Weidong Li, Chuanrong Zhang

Markov chain geostatistics is a methodology for simulating categorical fields. Its fundamental model for conditional simulation is the Markov chain random field (MCRF) model, with the transiogram serving as its basic spatial correlation measure. There are different methods to obtain transiogram models for MCRF simulation based on sample data and expert knowledge: linear interpolation, mathematical model joint-fitting, and a mixed approach combining both. This study aims to explore the sensitivity of the MCRF model to different transiogram jointing modeling methods. Two case studies were conducted to examine how simulated results, including optimal prediction maps and simulated realization maps, vary with different sets of transiogram models. The results indicate that all three transiogram joint modeling methods are applicable, and the MCRF model exhibits a general insensitivity to transiogram models produced by different methods, particularly when sample data are sufficient to generate reliable experimental transiograms. The variations in overall simulation accuracies based on different sets of transiogram models are not significant. However, notable improvements in simulation accuracy for minor classes were observed when theoretical transiogram models (generated by mathematical model fitting with expert knowledge) were utilized. This study suggests that methods for deriving transiogram models from experimental transiograms perform well in conditional simulations of categorical soil variables when meaningful experimental transiograms can be estimated. Employing mathematical models for transiogram modeling of minor classes provides a way to incorporate expert knowledge and improve the simulation accuracy of minor classes.

马尔可夫链地质统计学是一种模拟分类场的方法。其条件模拟的基本模型是马尔可夫链随机场(MCRF)模型,其基本空间相关性度量指标是瞬时图。根据样本数据和专家知识,有不同的方法可以获得用于 MCRF 模拟的横断图模型:线性插值法、数学模型联合拟合法以及两者相结合的混合方法。本研究旨在探讨 MCRF 模型对不同跨图联合建模方法的敏感性。研究人员进行了两项案例研究,以考察模拟结果(包括最佳预测图和模拟实现图)如何随不同的跨图模型集而变化。结果表明,所有三种横断面联合建模方法都适用,MCRF 模型对不同方法产生的横断面模型普遍不敏感,特别是当样本数据足以生成可靠的实验横断面时。根据不同的横断图模型,总体模拟精度的差异不大。不过,在使用理论横断面图模型(通过数学模型拟合和专家知识生成)时,小类的模拟精度有了明显提高。这项研究表明,如果能估算出有意义的试验横断面图,那么从试验横断面图推导出横断面图模型的方法在分类土壤变量的条件模拟中表现良好。采用数学模型建立小类的瞬时图模型,提供了一种结合专家知识和提高小类模拟精度的方法。
{"title":"Sensitivity analysis of the MCRF model to different transiogram joint modeling methods for simulating categorical spatial variables","authors":"Bo Zhang, Weidong Li, Chuanrong Zhang","doi":"10.1007/s10596-024-10294-x","DOIUrl":"https://doi.org/10.1007/s10596-024-10294-x","url":null,"abstract":"<p>Markov chain geostatistics is a methodology for simulating categorical fields. Its fundamental model for conditional simulation is the Markov chain random field (MCRF) model, with the transiogram serving as its basic spatial correlation measure. There are different methods to obtain transiogram models for MCRF simulation based on sample data and expert knowledge: linear interpolation, mathematical model joint-fitting, and a mixed approach combining both. This study aims to explore the sensitivity of the MCRF model to different transiogram jointing modeling methods. Two case studies were conducted to examine how simulated results, including optimal prediction maps and simulated realization maps, vary with different sets of transiogram models. The results indicate that all three transiogram joint modeling methods are applicable, and the MCRF model exhibits a general insensitivity to transiogram models produced by different methods, particularly when sample data are sufficient to generate reliable experimental transiograms. The variations in overall simulation accuracies based on different sets of transiogram models are not significant. However, notable improvements in simulation accuracy for minor classes were observed when theoretical transiogram models (generated by mathematical model fitting with expert knowledge) were utilized. This study suggests that methods for deriving transiogram models from experimental transiograms perform well in conditional simulations of categorical soil variables when meaningful experimental transiograms can be estimated. Employing mathematical models for transiogram modeling of minor classes provides a way to incorporate expert knowledge and improve the simulation accuracy of minor classes.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparison study of spatial and temporal schemes for flow and transport problems in fractured media with large parameter contrasts on small length scales 针对小长度尺度上参数对比较大的断裂介质中的流动和传输问题的空间和时间方案对比研究
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-05-13 DOI: 10.1007/s10596-024-10293-y
Wansheng Gao, Insa Neuweiler, Thomas Wick

In this work, various high-accuracy numerical schemes for transport problems in fractured media are further developed and compared. Specifically, to capture sharp gradients and abrupt changes in time, schemes with low order of accuracy are not always sufficient. To this end, discontinuous Galerkin up to order two, Streamline Upwind Petrov-Galerkin, and finite differences, are formulated. The resulting schemes are solved with sparse direct numerical solvers. Moreover, time discontinuous Galerkin methods of order one and two are solved monolithically and in a decoupled fashion, respectively, employing finite elements in space on locally refined meshes. Our algorithmic developments are substantiated with one regular fracture network and several further configurations in fractured media with large parameter contrasts on small length scales. Therein, the evaluation of the numerical schemes and implementations focuses on three key aspects, namely accuracy, monotonicity, and computational costs.

在这项工作中,进一步开发并比较了用于裂隙介质传输问题的各种高精度数值方案。具体来说,要捕捉急剧的梯度和时间上的突然变化,低精度阶次的方案并不总是足够的。为此,研究人员制定了高达二阶的非连续 Galerkin、流线上风 Petrov-Galerkin 和有限差分。由此产生的方案使用稀疏直接数值求解器求解。此外,一阶和二阶时间非连续伽勒金方法分别采用局部细化网格上的空间有限元进行整体求解和解耦求解。我们的算法开发通过一个规则断裂网络和断裂介质中的几个进一步配置进行了验证,这些断裂介质在小长度尺度上具有较大的参数对比。其中,对数值方案和实施的评估主要集中在三个关键方面,即精度、单调性和计算成本。
{"title":"A comparison study of spatial and temporal schemes for flow and transport problems in fractured media with large parameter contrasts on small length scales","authors":"Wansheng Gao, Insa Neuweiler, Thomas Wick","doi":"10.1007/s10596-024-10293-y","DOIUrl":"https://doi.org/10.1007/s10596-024-10293-y","url":null,"abstract":"<p>In this work, various high-accuracy numerical schemes for transport problems in fractured media are further developed and compared. Specifically, to capture sharp gradients and abrupt changes in time, schemes with low order of accuracy are not always sufficient. To this end, discontinuous Galerkin up to order two, Streamline Upwind Petrov-Galerkin, and finite differences, are formulated. The resulting schemes are solved with sparse direct numerical solvers. Moreover, time discontinuous Galerkin methods of order one and two are solved monolithically and in a decoupled fashion, respectively, employing finite elements in space on locally refined meshes. Our algorithmic developments are substantiated with one regular fracture network and several further configurations in fractured media with large parameter contrasts on small length scales. Therein, the evaluation of the numerical schemes and implementations focuses on three key aspects, namely accuracy, monotonicity, and computational costs.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iterative data-driven construction of surrogates for an efficient Bayesian identification of oil spill source parameters from image contours 迭代数据驱动的代用物构建,用于从图像轮廓中高效贝叶斯识别溢油源参数
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-05-09 DOI: 10.1007/s10596-024-10288-9
Samah El Mohtar, Olivier Le Maître, Omar Knio, Ibrahim Hoteit

Identifying the source of an oil spill is an essential step in environmental forensics. The Bayesian approach allows to estimate the source parameters of an oil spill from available observations. Sampling the posterior distribution, however, can be computationally prohibitive unless the forward model is replaced by an inexpensive surrogate. Yet the construction of globally accurate surrogates can be challenging when the forward model exhibits strong nonlinear variations. We present an iterative data-driven algorithm for the construction of polynomial chaos surrogates whose accuracy is localized in regions of high posterior probability. Two synthetic oil spill experiments, in which the construction of prior-based surrogates is not feasible, are conducted to assess the performance of the proposed algorithm in estimating five source parameters. The algorithm successfully provided a good approximation of the posterior distribution and accelerated the estimation of the oil spill source parameters and their uncertainties by an order of 100 folds.

确定油类泄漏源是环境取证的重要步骤。贝叶斯方法可以根据现有的观察结果估算出油类泄漏源参数。然而,对后验分布进行采样可能会导致计算量过大,除非用廉价的替代品取代前验模型。然而,当前瞻性模型表现出强烈的非线性变化时,构建全局精确的代用模型可能具有挑战性。我们提出了一种数据驱动的迭代算法,用于构建多项式混沌代用模型,其准确性被定位在后验概率较高的区域。在两个合成溢油实验中,构建基于先验概率的代用值是不可行的,我们对所提出的算法在估计五个源参数方面的性能进行了评估。该算法成功地提供了后验分布的良好近似值,并将溢油源参数及其不确定性的估算速度提高了 100 倍。
{"title":"Iterative data-driven construction of surrogates for an efficient Bayesian identification of oil spill source parameters from image contours","authors":"Samah El Mohtar, Olivier Le Maître, Omar Knio, Ibrahim Hoteit","doi":"10.1007/s10596-024-10288-9","DOIUrl":"https://doi.org/10.1007/s10596-024-10288-9","url":null,"abstract":"<p>Identifying the source of an oil spill is an essential step in environmental forensics. The Bayesian approach allows to estimate the source parameters of an oil spill from available observations. Sampling the posterior distribution, however, can be computationally prohibitive unless the forward model is replaced by an inexpensive surrogate. Yet the construction of globally accurate surrogates can be challenging when the forward model exhibits strong nonlinear variations. We present an iterative data-driven algorithm for the construction of polynomial chaos surrogates whose accuracy is localized in regions of high posterior probability. Two synthetic oil spill experiments, in which the construction of prior-based surrogates is not feasible, are conducted to assess the performance of the proposed algorithm in estimating five source parameters. The algorithm successfully provided a good approximation of the posterior distribution and accelerated the estimation of the oil spill source parameters and their uncertainties by an order of 100 folds.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automation of the meshing process of geological data 地质数据网格划分过程自动化
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-05-07 DOI: 10.1007/s10596-024-10290-1
Sui Bun Lo, Oubay Hassan, Jason Jones, Xiaolong Liu, Nevan C Himmelberg, Dean Thornton

This work proposes a novel meshing technique that is able to extract surfaces from processed seismic data and integrate surfaces that were constructed using other extraction techniques. Contrary to other existing methods, the process is fully automated and does not require any user intervention. The proposed system includes an approach for closing the gaps that arise from the different techniques used for surface extraction. The developed process is able to handle non-manifold domains that result from multiple surface intersections. Surface and volume meshing that comply with user specified mesh control techniques are implemented to ensure the desired mesh quality. The integrated procedures provide a unique facility to handle geotechnical models and accelerate the generation of quality meshes for geophysics modelling. The developed procedure enables the creation of meshes for complex reservoir models to be reduced from weeks to a few hours. Various industrial examples are shown to demonstrate the practicable use of the developed approach to handle real life data.

这项工作提出了一种新颖的网格划分技术,能够从处理过的地震数据中提取曲面,并整合使用其他提取技术构建的曲面。与其他现有方法不同的是,该过程完全自动化,无需用户干预。建议的系统包括一种方法,用于弥补曲面提取所用不同技术产生的差距。所开发的流程能够处理由多个表面交点形成的非芒格域。采用符合用户指定网格控制技术的曲面和体积网格划分,以确保所需的网格质量。集成程序为处理岩土模型提供了独特的工具,并加快了地球物理建模所需的高质量网格的生成。所开发的程序可将复杂储层模型的网格创建时间从几周缩短到几小时。各种工业实例展示了所开发的方法在处理实际数据方面的实用性。
{"title":"Automation of the meshing process of geological data","authors":"Sui Bun Lo, Oubay Hassan, Jason Jones, Xiaolong Liu, Nevan C Himmelberg, Dean Thornton","doi":"10.1007/s10596-024-10290-1","DOIUrl":"https://doi.org/10.1007/s10596-024-10290-1","url":null,"abstract":"<p>This work proposes a novel meshing technique that is able to extract surfaces from processed seismic data and integrate surfaces that were constructed using other extraction techniques. Contrary to other existing methods, the process is fully automated and does not require any user intervention. The proposed system includes an approach for closing the gaps that arise from the different techniques used for surface extraction. The developed process is able to handle non-manifold domains that result from multiple surface intersections. Surface and volume meshing that comply with user specified mesh control techniques are implemented to ensure the desired mesh quality. The integrated procedures provide a unique facility to handle geotechnical models and accelerate the generation of quality meshes for geophysics modelling. The developed procedure enables the creation of meshes for complex reservoir models to be reduced from weeks to a few hours. Various industrial examples are shown to demonstrate the practicable use of the developed approach to handle real life data.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constrained pressure-temperature residual (CPTR) preconditioner performance for large-scale thermal CO $$_2$$ injection simulation 用于大规模一氧化碳_2$$注入热模拟的受限压力-温度残差(CPTR)预处理器的性能
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-05-01 DOI: 10.1007/s10596-024-10292-z
Matthias A. Cremon, Jacques Franc, François P. Hamon

This work studies the performance of a novel preconditioner, designed for thermal reservoir simulation cases and recently introduced in Roy et al. (SIAM J. Sci. Comput. 42, 2020) and Cremon et al. (J. Comput. Phys. 418C, 2020), on large-scale thermal CO(_2) injection cases. For Carbon Capture and Sequestration (CCS) projects, injecting CO(_2) under supercritical conditions is typically tens of degrees colder than the reservoir temperature. Thermal effects can have a significant impact on the simulation results, but they also add many challenges for the solvers. More specifically, the usual combination of an iterative linear solver (such as GMRES) and the Constrained Pressure Residual (CPR) physics-based block-preconditioner is known to perform rather poorly or fail to converge when thermal effects play a significant role. The Constrained Pressure-Temperature Residual (CPTR) preconditioner retains the (2times 2) block structure (elliptic/hyperbolic) of CPR but includes the temperature in the elliptic subsystem. Doing so allows the solver to appropriately handle the long-range, elliptic part of the parabolic energy equation. The elliptic subsystem is now formed by two equations, and is dealt with by the system-solver of BoomerAMG (from the HYPRE library). Then a global smoother, ILU(0), is applied to the full system to handle the local, hyperbolic temperature fronts. We implemented CPTR in the multi-physics solver GEOS and present results on various large-scale thermal CCS simulation cases, including both Cartesian and fully unstructured meshes, up to tens of millions of degrees of freedom. The CPTR preconditioner severely reduces the number of GMRES iterations and the runtime, with cases timing out in 24h with CPR now requiring a few hours with CPTR. We present strong scaling results using hundreds of CPU cores for multiple cases, and show close to linear scaling. CPTR is also virtually insensitive to the thermal Péclet number (which compares advection and diffusion effects) and is suitable to any thermal regime.

这项工作研究了一种新型预处理器的性能,这种预处理器是为热储层模拟案例设计的,最近在 Roy 等人(SIAM J. Sci. Comput. 42, 2020)和 Cremon 等人(J. Comput. Phys. 418C, 2020)的文章中介绍了它在大规模热 CO(_2) 注入案例中的性能。对于碳捕集与封存(CCS)项目而言,在超临界条件下注入 CO(_2) 通常比储层温度低几十度。热效应会对模拟结果产生重大影响,但也会给求解器带来许多挑战。更具体地说,众所周知,迭代线性求解器(如 GMRES)和基于约束压力残余(CPR)的物理分块预处理器的常规组合在热效应起重要作用时,会表现不佳或无法收敛。约束压力-温度残差(CPTR)预处理器保留了 CPR 的 (2times 2) 块结构(椭圆/双曲),但在椭圆子系统中包含了温度。这样,求解器就能适当处理抛物能量方程的长程椭圆部分。椭圆子系统现在由两个方程组成,由 BoomerAMG(来自 HYPRE 库)的系统求解器处理。然后,全局平滑器 ILU(0) 被应用于整个系统,以处理局部双曲温度锋。我们在多物理场求解器 GEOS 中实施了 CPTR,并展示了各种大规模热 CCS 模拟案例的结果,包括笛卡尔网格和完全非结构网格,自由度高达数千万。CPTR 前处理程序大大减少了 GMRES 的迭代次数和运行时间,以前使用 CPR 时需要 24 小时,现在使用 CPTR 时只需几小时。我们在多个案例中使用数百个 CPU 内核得出了强大的扩展结果,并显示出接近线性的扩展。CPTR 对热佩克莱特数(比较平流和扩散效应)也几乎不敏感,适用于任何热环境。
{"title":"Constrained pressure-temperature residual (CPTR) preconditioner performance for large-scale thermal CO $$_2$$ injection simulation","authors":"Matthias A. Cremon, Jacques Franc, François P. Hamon","doi":"10.1007/s10596-024-10292-z","DOIUrl":"https://doi.org/10.1007/s10596-024-10292-z","url":null,"abstract":"<p>This work studies the performance of a novel preconditioner, designed for thermal reservoir simulation cases and recently introduced in Roy et al. (SIAM J. Sci. Comput. <b>42</b>, 2020) and Cremon et al. (J. Comput. Phys. <b>418C</b>, 2020), on large-scale thermal CO<span>(_2)</span> injection cases. For Carbon Capture and Sequestration (CCS) projects, injecting CO<span>(_2)</span> under supercritical conditions is typically tens of degrees colder than the reservoir temperature. Thermal effects can have a significant impact on the simulation results, but they also add many challenges for the solvers. More specifically, the usual combination of an iterative linear solver (such as GMRES) and the Constrained Pressure Residual (CPR) physics-based block-preconditioner is known to perform rather poorly or fail to converge when thermal effects play a significant role. The Constrained Pressure-Temperature Residual (CPTR) preconditioner retains the <span>(2times 2)</span> block structure (elliptic/hyperbolic) of CPR but includes the temperature in the elliptic subsystem. Doing so allows the solver to appropriately handle the long-range, elliptic part of the parabolic energy equation. The elliptic subsystem is now formed by two equations, and is dealt with by the system-solver of BoomerAMG (from the HYPRE library). Then a global smoother, ILU(0), is applied to the full system to handle the local, hyperbolic temperature fronts. We implemented CPTR in the multi-physics solver GEOS and present results on various large-scale thermal CCS simulation cases, including both Cartesian and fully unstructured meshes, up to tens of millions of degrees of freedom. The CPTR preconditioner severely reduces the number of GMRES iterations and the runtime, with cases timing out in 24h with CPR now requiring a few hours with CPTR. We present strong scaling results using hundreds of CPU cores for multiple cases, and show close to linear scaling. CPTR is also virtually insensitive to the thermal Péclet number (which compares advection and diffusion effects) and is suitable to any thermal regime.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparrow search algorithm-driven clustering analysis of rock mass discontinuity sets 麻雀搜索算法驱动的岩块不连续集聚类分析
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-04-23 DOI: 10.1007/s10596-024-10287-w
Wenxuan Wu, Wenkai Feng, Xiaoyuan Yi, Jiachen Zhao, Yongjian Zhou
{"title":"Sparrow search algorithm-driven clustering analysis of rock mass discontinuity sets","authors":"Wenxuan Wu, Wenkai Feng, Xiaoyuan Yi, Jiachen Zhao, Yongjian Zhou","doi":"10.1007/s10596-024-10287-w","DOIUrl":"https://doi.org/10.1007/s10596-024-10287-w","url":null,"abstract":"","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140668803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust inversion of 1D magnetotelluric data using the Huber loss function 利用 Huber 损失函数对一维磁突触数据进行稳健反演
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-04-23 DOI: 10.1007/s10596-024-10286-x
Elfitra Desifatma, I. Djaja, P. M. Pratomo, Supriyadi, E. Mustopa, M. Evita, M. Djamal, Wahyu Srigutomo
{"title":"Robust inversion of 1D magnetotelluric data using the Huber loss function","authors":"Elfitra Desifatma, I. Djaja, P. M. Pratomo, Supriyadi, E. Mustopa, M. Evita, M. Djamal, Wahyu Srigutomo","doi":"10.1007/s10596-024-10286-x","DOIUrl":"https://doi.org/10.1007/s10596-024-10286-x","url":null,"abstract":"","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140667258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Speeding up the reservoir simulation by real time prediction of the initial guess for the Newton-Raphson’s iterations 通过实时预测牛顿-拉斐森迭代的初始猜测,加快水库模拟速度
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-04-09 DOI: 10.1007/s10596-024-10284-z
Musheg Petrosyants, Vladislav Trifonov, Egor Illarionov, Dmitry Koroteev

We study linear models for the prediction of the initial guess for the nonlinear Newton-Raphson solver. These models use one or more of the previous simulation steps for prediction, and their parameters are estimated by the ordinary least-squares method. A key feature of the approach is that the parameter estimation is performed using data obtained directly during the simulation and the models are updated in real time. Thus we avoid the expensive process of dataset generation and the need for pre-trained models. We validate the workflow on a standard benchmark Egg dataset of two-phase flow in porous media and compare it to standard approaches for the estimation of initial guess. We demonstrate that the proposed approach leads to reduction in the number of iterations in the Newton-Raphson algorithm and speeds up simulation time. In particular, for the Egg dataset, we obtained a 30% reduction in the number of nonlinear iterations and a 20% reduction in the simulation time.

我们研究了预测非线性牛顿-拉斐森求解器初始猜测的线性模型。这些模型使用一个或多个先前的模拟步骤进行预测,其参数用普通最小二乘法估算。这种方法的一个主要特点是,参数估计是利用在模拟过程中直接获得的数据进行的,而且模型是实时更新的。因此,我们避免了昂贵的数据集生成过程,也不需要预先训练模型。我们在多孔介质中两相流的标准基准 Egg 数据集上验证了该工作流程,并将其与估计初始猜测的标准方法进行了比较。我们证明,所提出的方法减少了牛顿-拉夫逊算法的迭代次数,加快了模拟时间。特别是在 Egg 数据集上,我们减少了 30% 的非线性迭代次数,并缩短了 20% 的模拟时间。
{"title":"Speeding up the reservoir simulation by real time prediction of the initial guess for the Newton-Raphson’s iterations","authors":"Musheg Petrosyants, Vladislav Trifonov, Egor Illarionov, Dmitry Koroteev","doi":"10.1007/s10596-024-10284-z","DOIUrl":"https://doi.org/10.1007/s10596-024-10284-z","url":null,"abstract":"<p>We study linear models for the prediction of the initial guess for the nonlinear Newton-Raphson solver. These models use one or more of the previous simulation steps for prediction, and their parameters are estimated by the ordinary least-squares method. A key feature of the approach is that the parameter estimation is performed using data obtained directly during the simulation and the models are updated in real time. Thus we avoid the expensive process of dataset generation and the need for pre-trained models. We validate the workflow on a standard benchmark Egg dataset of two-phase flow in porous media and compare it to standard approaches for the estimation of initial guess. We demonstrate that the proposed approach leads to reduction in the number of iterations in the Newton-Raphson algorithm and speeds up simulation time. In particular, for the Egg dataset, we obtained a 30% reduction in the number of nonlinear iterations and a 20% reduction in the simulation time.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computational Geosciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1