Adapting non-parametric spline representations of outdoor air pollution health effects associations for use in public health benefits assessment

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Air Quality Atmosphere and Health Pub Date : 2024-01-29 DOI:10.1007/s11869-024-01507-4
Richard Burnett, Michael Cork, Neal Fann, Hong Chen, Scott Weichenthal
{"title":"Adapting non-parametric spline representations of outdoor air pollution health effects associations for use in public health benefits assessment","authors":"Richard Burnett,&nbsp;Michael Cork,&nbsp;Neal Fann,&nbsp;Hong Chen,&nbsp;Scott Weichenthal","doi":"10.1007/s11869-024-01507-4","DOIUrl":null,"url":null,"abstract":"<div><p>The magnitude and shape of the association between outdoor air pollution concentrations and health need to be characterized in order to estimate public health benefits from proposed mitigation strategies. Specialized parametric functions have been proposed for this characterization. However, non-parametric spline models offer more flexibility, less bias, and predictive power, in describing these associations and are thus preferred over relatively simple parametric formulations. Unrestricted spline representations are often reported but many are not suitable for benefits analysis due to their erratic concentration-response behavior and are usually not presented in a format consistent with the requirements necessary to conduct a benefits analysis. We propose a method to adapt non-parametric spline representations of concentration-response associations that are suitable for public health benefits analysis by transforming spline predictions and its uncertainty over the study exposure range to a new spline formulation that is both monotonically increasing and restricted to concentration-response patterns suitable for use in health benefits assessment. We selected two examples of the association between long-term exposure to fine particulate matter and mortality in Canada and the USA that displayed spline fits that were neither monotonically increasing nor suitable, we suggest, for benefits analysis. We suggest our model is suitable for benefits analysis and conduct such analyses for both Canada and the USA, comparing benefits estimates to traditional models. Finally, we provide guidance on how to report spline fitting results such they can be used either in benefits analysis directly, or to fit our new model.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11869-024-01507-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01507-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The magnitude and shape of the association between outdoor air pollution concentrations and health need to be characterized in order to estimate public health benefits from proposed mitigation strategies. Specialized parametric functions have been proposed for this characterization. However, non-parametric spline models offer more flexibility, less bias, and predictive power, in describing these associations and are thus preferred over relatively simple parametric formulations. Unrestricted spline representations are often reported but many are not suitable for benefits analysis due to their erratic concentration-response behavior and are usually not presented in a format consistent with the requirements necessary to conduct a benefits analysis. We propose a method to adapt non-parametric spline representations of concentration-response associations that are suitable for public health benefits analysis by transforming spline predictions and its uncertainty over the study exposure range to a new spline formulation that is both monotonically increasing and restricted to concentration-response patterns suitable for use in health benefits assessment. We selected two examples of the association between long-term exposure to fine particulate matter and mortality in Canada and the USA that displayed spline fits that were neither monotonically increasing nor suitable, we suggest, for benefits analysis. We suggest our model is suitable for benefits analysis and conduct such analyses for both Canada and the USA, comparing benefits estimates to traditional models. Finally, we provide guidance on how to report spline fitting results such they can be used either in benefits analysis directly, or to fit our new model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调整室外空气污染健康影响关联的非参数样条表示法,用于公共健康效益评估
室外空气污染浓度与健康之间的关联程度和形状需要加以描述,以便估算建议的缓解策略对公众健康带来的益处。已经提出了专门的参数函数来描述这一特征。然而,非参数样条模型在描述这些关联时具有更大的灵活性、更小的偏差和预测能力,因此比相对简单的参数公式更受青睐。非限制性样条曲线表示法经常被报道,但由于其浓度-反应行为不稳定,很多都不适合进行效益分析,而且通常也没有按照进行效益分析所需的格式进行表述。我们提出了一种方法,通过将研究暴露范围内的样条预测及其不确定性转换为一种新的样条表述,使浓度-反应关联的非参数样条表述适合于公共健康效益分析,这种样条表述既是单调递增的,又限于适合用于健康效益评估的浓度-反应模式。我们选择了加拿大和美国细颗粒物长期暴露与死亡率之间关系的两个例子,这些例子显示的样条拟合既不是单调递增的,也不适合进行效益分析。我们认为我们的模型适用于效益分析,并对加拿大和美国进行了此类分析,将效益估计值与传统模型进行了比较。最后,我们就如何报告样条拟合结果提供了指导,使其既可直接用于效益分析,也可用于拟合我们的新模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Air Quality Atmosphere and Health
Air Quality Atmosphere and Health ENVIRONMENTAL SCIENCES-
CiteScore
8.80
自引率
2.00%
发文量
146
审稿时长
>12 weeks
期刊介绍: Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health. It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes. International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals. Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements. This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.
期刊最新文献
Reduction of 2,6-dimethoxyphenol odor emitted from Ribbed Smoked Sheet by Co(II)-salen complex The regulation effect of urban green space on air particulate matter concentration under different matrices in Xi'an city Moss biomonitoring of air quality linked with trace metals pollution around a metallurgical complex in Elbasan, Albania An analytical comparison of two versions (US EPA and BIS) of pararosaniline method used for monitoring of ambient SO2 Long term trends in global air pollution potential and its application to ventilation corridors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1