Beatriz Hecht Ortiz, Denise de Abreu Garófalo, Tatielle do Nascimento, Ana Paula dos Santos Matos, Eduardo Ricci-Junior
{"title":"Current Application of Nanotechnology to Enhance Cutaneous Permeation of Vitamin C and Derivatives","authors":"Beatriz Hecht Ortiz, Denise de Abreu Garófalo, Tatielle do Nascimento, Ana Paula dos Santos Matos, Eduardo Ricci-Junior","doi":"10.2174/0115734137279981240104061749","DOIUrl":null,"url":null,"abstract":"Background:: Vitamin C (VitC), or L-ascorbic acid in topical formulations acts as an antioxidant, depigmentant, stimulator of stratum corneum renewal and collagen synthesis. VitC is a thermolabile, water-soluble compound, oxidizes when its solution is exposed to air, metals and high pH. Derivative compounds were created to circumvent the instability, poor penetration capacity in the stratum corneum. Furthermore, new drug delivery systems using nanotechnology began to be studied, providing protection against degradation and penetration through the skin. Objective:: The current paper aimed at carrying out a systematic review between 2006 and 2023, seeking innovative topical formulations containing VitC and its derivatives, where the problem of low permeation and instability was circumvented. Methods:: The search for articles was performed in the Science Direct, Springer and PubMed databases. The largest amount of information was gathered on innovative formulations for topical use for the delivery of VitC and its derivatives, physicochemical characterization data, in vitro and in vivo studies. Results:: The search in the databases resulted in a total of 3032 articles, of which 16 studies were selected for the integrative review, as they proved the possibility of carrying the active ingredient in nanosystems, allowing increased stability, better permeation properties and in vitro cutaneous release, enabling the therapeutic function of the active ingredient through the application of formulations to the skin. In vivo studies also proved the clinical efficacy of the compound in liposomes, ethosomes and niosomes. Conclusion:: The most described nanocarriers were nanoparticles and liposomes, and one study involved niosomes and ethosomes. Therefore, even though it is not a newly discovered molecule, VitC continues to be studied in topical formulations ensuring stability, permeation, and effectiveness.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0115734137279981240104061749","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background:: Vitamin C (VitC), or L-ascorbic acid in topical formulations acts as an antioxidant, depigmentant, stimulator of stratum corneum renewal and collagen synthesis. VitC is a thermolabile, water-soluble compound, oxidizes when its solution is exposed to air, metals and high pH. Derivative compounds were created to circumvent the instability, poor penetration capacity in the stratum corneum. Furthermore, new drug delivery systems using nanotechnology began to be studied, providing protection against degradation and penetration through the skin. Objective:: The current paper aimed at carrying out a systematic review between 2006 and 2023, seeking innovative topical formulations containing VitC and its derivatives, where the problem of low permeation and instability was circumvented. Methods:: The search for articles was performed in the Science Direct, Springer and PubMed databases. The largest amount of information was gathered on innovative formulations for topical use for the delivery of VitC and its derivatives, physicochemical characterization data, in vitro and in vivo studies. Results:: The search in the databases resulted in a total of 3032 articles, of which 16 studies were selected for the integrative review, as they proved the possibility of carrying the active ingredient in nanosystems, allowing increased stability, better permeation properties and in vitro cutaneous release, enabling the therapeutic function of the active ingredient through the application of formulations to the skin. In vivo studies also proved the clinical efficacy of the compound in liposomes, ethosomes and niosomes. Conclusion:: The most described nanocarriers were nanoparticles and liposomes, and one study involved niosomes and ethosomes. Therefore, even though it is not a newly discovered molecule, VitC continues to be studied in topical formulations ensuring stability, permeation, and effectiveness.
期刊介绍:
Current Nanoscience publishes (a) Authoritative/Mini Reviews, and (b) Original Research and Highlights written by experts covering the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano-structures, nano-bubbles, nano-droplets and nanofluids. Applications of nanoscience in physics, material science, chemistry, synthesis, environmental science, electronics, biomedical nanotechnology, biomedical engineering, biotechnology, medicine and pharmaceuticals are also covered. The journal is essential to all researches involved in nanoscience and its applied and fundamental areas of science, chemistry, physics, material science, engineering and medicine.
Current Nanoscience also welcomes submissions on the following topics of Nanoscience and Nanotechnology:
Nanoelectronics and photonics
Advanced Nanomaterials
Nanofabrication and measurement
Nanobiotechnology and nanomedicine
Nanotechnology for energy
Sensors and actuator
Computational nanoscience and technology.