Calibrating multi-dimensional complex ODE from noisy data via deep neural networks

Pub Date : 2024-01-29 DOI:10.1016/j.jspi.2024.106147
Kexuan Li , Fangfang Wang , Ruiqi Liu , Fan Yang , Zuofeng Shang
{"title":"Calibrating multi-dimensional complex ODE from noisy data via deep neural networks","authors":"Kexuan Li ,&nbsp;Fangfang Wang ,&nbsp;Ruiqi Liu ,&nbsp;Fan Yang ,&nbsp;Zuofeng Shang","doi":"10.1016/j.jspi.2024.106147","DOIUrl":null,"url":null,"abstract":"<div><p><span>Ordinary differential equations<span> (ODEs) are widely used to model complex dynamics that arise in biology, chemistry, engineering, finance, physics, etc. Calibration of a complicated ODE system using noisy data is generally challenging. In this paper, we propose a two-stage nonparametric approach to address this problem. We first extract the de-noised data and their higher order derivatives using boundary kernel method, and then feed them into a sparsely connected </span></span>deep neural network<span> with rectified linear unit (ReLU) activation function. Our method is able to recover the ODE system without being subject to the curse of dimensionality and the complexity of the ODE structure. We have shown that our method is consistent if the ODE possesses a general modular structure with each modular component involving only a few input variables, and the network architecture is properly chosen. Theoretical properties are corroborated by an extensive simulation study that also demonstrates the effectiveness of the proposed method in finite samples. Finally, we use our method to simultaneously characterize the growth rate of COVID-19 cases from the 50 states of the United States.</span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ordinary differential equations (ODEs) are widely used to model complex dynamics that arise in biology, chemistry, engineering, finance, physics, etc. Calibration of a complicated ODE system using noisy data is generally challenging. In this paper, we propose a two-stage nonparametric approach to address this problem. We first extract the de-noised data and their higher order derivatives using boundary kernel method, and then feed them into a sparsely connected deep neural network with rectified linear unit (ReLU) activation function. Our method is able to recover the ODE system without being subject to the curse of dimensionality and the complexity of the ODE structure. We have shown that our method is consistent if the ODE possesses a general modular structure with each modular component involving only a few input variables, and the network architecture is properly chosen. Theoretical properties are corroborated by an extensive simulation study that also demonstrates the effectiveness of the proposed method in finite samples. Finally, we use our method to simultaneously characterize the growth rate of COVID-19 cases from the 50 states of the United States.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
通过深度神经网络从噪声数据中校准多维复杂 ODE
常微分方程(ODE)被广泛用于模拟生物、化学、工程、金融、物理等领域出现的复杂动态。使用噪声数据校准复杂的 ODE 系统通常具有挑战性。在本文中,我们提出了一种两阶段非参数方法来解决这一问题。首先,我们使用边界核方法提取去噪数据及其高阶导数,然后将其送入具有整流线性单元(ReLU)激活函数的稀疏连接深度神经网络。我们的方法能够恢复 ODE 系统,而不受维度诅咒和 ODE 结构复杂性的影响。我们已经证明,如果 ODE 具有一般的模块结构,每个模块部分只涉及几个输入变量,并且网络结构选择得当,那么我们的方法就是一致的。大量的模拟研究证实了我们的理论特性,同时也证明了我们提出的方法在有限样本中的有效性。最后,我们使用我们的方法同时描述了来自美国 50 个州的 COVID-19 病例的增长率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1