Large-Area Quantum Dot Light-Emitting Diodes Employing Sputtered Zn0.85Mg0.15O Electron Transport Material

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Electronic Materials Letters Pub Date : 2024-01-30 DOI:10.1007/s13391-023-00482-9
Bomi Kim, Jiwan Kim
{"title":"Large-Area Quantum Dot Light-Emitting Diodes Employing Sputtered Zn0.85Mg0.15O Electron Transport Material","authors":"Bomi Kim,&nbsp;Jiwan Kim","doi":"10.1007/s13391-023-00482-9","DOIUrl":null,"url":null,"abstract":"<div><p>We report a large-area quantum dot light-emitting diode (QLED) with sputtered Zn<sub>0.85</sub>Mg<sub>0.15</sub>O (ZMO) as an electron transport layer (ETL). Uniform ZMO is applied as ETL of the inverted structured QLED and the adjustment of Ar/O<sub>2</sub> ratio on device characteristics is studied in detail. Compared to pristine ZMO, ZMOs with O<sub>2</sub> gas are found to be beneficial to the charge balance in the emitting layer of QLEDs mainly by their upshifted conduction band minimum, which in turn limits an electron injection. Additionally, it is found that oxygen vacancies in the ZMO, acting as the exciton quenching sites, are responsible for the device stability. QLEDs with 6:1 ZMO produce a maximum luminance of 136,257 cd/m<sup>2</sup> and external quantum efficiency of 5.15%, which are the best device performances to date among QLEDs with sputtered ETLs. These results indicate that the sputtered ZMO shows great promise for use as an inorganic ETL for future large-area QLEDs.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 2","pages":"140 - 149"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00482-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We report a large-area quantum dot light-emitting diode (QLED) with sputtered Zn0.85Mg0.15O (ZMO) as an electron transport layer (ETL). Uniform ZMO is applied as ETL of the inverted structured QLED and the adjustment of Ar/O2 ratio on device characteristics is studied in detail. Compared to pristine ZMO, ZMOs with O2 gas are found to be beneficial to the charge balance in the emitting layer of QLEDs mainly by their upshifted conduction band minimum, which in turn limits an electron injection. Additionally, it is found that oxygen vacancies in the ZMO, acting as the exciton quenching sites, are responsible for the device stability. QLEDs with 6:1 ZMO produce a maximum luminance of 136,257 cd/m2 and external quantum efficiency of 5.15%, which are the best device performances to date among QLEDs with sputtered ETLs. These results indicate that the sputtered ZMO shows great promise for use as an inorganic ETL for future large-area QLEDs.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用溅射 Zn0.85Mg0.15O 电子传输材料的大面积量子点发光二极管
我们报告了一种以溅射 Zn0.85Mg0.15O(ZMO)作为电子传输层(ETL)的大面积量子点发光二极管(QLED)。将均匀的 ZMO 用作倒置结构 QLED 的 ETL,并详细研究了 Ar/O2 比率对器件特性的影响。与原始 ZMO 相比,发现含有氧气的 ZMO 有利于 QLED 发光层中的电荷平衡,主要是因为它们的上移导带最小值反过来限制了电子注入。此外,研究还发现,ZMO 中的氧空位作为激子淬灭位点,对器件的稳定性起着重要作用。采用 6:1 ZMO 的 QLED 产生的最大亮度为 136257 cd/m2,外部量子效率为 5.15%,是迄今为止采用溅射 ETL 的 QLED 中器件性能最好的。这些结果表明,溅射 ZMO 很有希望用作未来大面积 QLED 的无机 ETL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electronic Materials Letters
Electronic Materials Letters 工程技术-材料科学:综合
CiteScore
4.70
自引率
20.80%
发文量
52
审稿时长
2.3 months
期刊介绍: Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.
期刊最新文献
Impact of Crystal Domain on Electrical Performance and Bending Durability of Flexible Organic Thin-Film Transistors with diF-TES-ADT Semiconductor All-Cobalt-Free Layered/Olivine Mixed Cathode Material for High-Electrode Density and Enhanced Cycle-Life Performance High-speed and Sub-ppm Detectable Tellurene NO2 Chemiresistive Room-Temperature Sensor under Humidity Environments A Neural Network Approach for Health State Estimation of Lithium-Ion Batteries Incorporating Physics Knowledge Enhanced Magnetic Permeability Through Improved Packing Density for Thin-Film Type Power Inductors for High-Frequency Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1