首页 > 最新文献

Electronic Materials Letters最新文献

英文 中文
Improvement of Microwave Dielectric Properties of MgTiO3 Ceramics by Ti-Site Complex Substitution ti位络合物取代改善MgTiO3陶瓷的微波介电性能
IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-09-05 DOI: 10.1007/s13391-023-00456-x
Jong Seok Chung, Eung Soo Kim

Microwave dielectric properties of MgTi1-x(Mn1/3Nb2/3)xO3 (0 ≤ x ≤ 0.05) ceramics were investigated based on their crystal structure characteristics. For the specimens sintered at 1400 °C for 4 h, complete solid solutions with a single phase and an ilmenite structure were obtained for the entire range of compositions. The quality factor (Qf) was dependent on the average Ti-site covalency related to the electronegativity difference and the reduction state of Ti4+. MgTi0.995(Mn1/3Nb2/3)0.005O3 exhibited the highest Qf value of 212,000 GHz owing to the high average covalency obtained from the Rietveld refinement of X-ray Diffraction patterns, high binding energy, and small full width at half maximum of Ti 2p peaks, as confirmed by X-ray Photoelectron Spectroscopy of MgTiO3 –based ceramics. The temperature coefficients of the resonant frequency (TCF) of MgTiO3-based ceramics were dependent on the degree of average oxygen octahedral distortion of the ilmenite structure. The dielectric constant (K) was affected by the theoretical dielectric polarizability of the constituent ions of sintered specimens. Excellent microwave dielectric properties were obtained for MgTi0.995(Mn1/3Nb2/3)0.005O3; K = 18.05, Qf = 212,000 GHz, TCF =  − 37.04 ppm/°C. The microwave dielectric properties were improved by substituting (Mn1/3Nb2/3)4+ for Ti4+ in MgTiO3-based ceramics.

Graphical Abstract

根据 MgTi1-x(Mn1/3Nb2/3)xO3(0 ≤ x ≤ 0.05)陶瓷的晶体结构特征,研究了其微波介电性能。对于在 1400 °C 下烧结 4 小时的试样,在整个成分范围内都获得了具有单相和钛铁矿结构的完整固溶体。品质因数(Qf)取决于与电负性差异和 Ti4+ 的还原状态有关的平均 Ti 位共价。MgTi0.995(Mn1/3Nb2/3)0.005O3 的 Qf 值最高,达到 212,000 GHz,这是因为根据 X 射线衍射图样的里特维尔德细化得到的平均共价率高、结合能高、Ti 2p 峰的半最大全宽小,这一点已通过 MgTiO3 基陶瓷的 X 射线光电子能谱分析得到证实。MgTiO3 基陶瓷的共振频率温度系数(TCF)取决于钛铁矿结构的八面体平均氧畸变程度。介电常数(K)受烧结试样中组成离子的理论介电极化率的影响。MgTi0.995(Mn1/3Nb2/3)0.005O3 获得了优异的微波介电性能;K = 18.05,Qf = 212,000 GHz,TCF = - 37.04 ppm/°C。通过在 MgTiO3 基陶瓷中用 (Mn1/3Nb2/3)4+ 代替 Ti4+,微波介电性能得到了改善。 图文摘要
{"title":"Improvement of Microwave Dielectric Properties of MgTiO3 Ceramics by Ti-Site Complex Substitution","authors":"Jong Seok Chung,&nbsp;Eung Soo Kim","doi":"10.1007/s13391-023-00456-x","DOIUrl":"10.1007/s13391-023-00456-x","url":null,"abstract":"<div><p>Microwave dielectric properties of MgTi<sub>1-<i>x</i></sub>(Mn<sub>1/3</sub>Nb<sub>2/3</sub>)<sub><i>x</i></sub>O<sub>3</sub> (0 ≤ <i>x</i> ≤ 0.05) ceramics were investigated based on their crystal structure characteristics. For the specimens sintered at 1400 °C for 4 h, complete solid solutions with a single phase and an ilmenite structure were obtained for the entire range of compositions. The quality factor (<i>Qf</i>) was dependent on the average Ti-site covalency related to the electronegativity difference and the reduction state of Ti<sup>4+</sup>. MgTi<sub>0.995</sub>(Mn<sub>1/3</sub>Nb<sub>2/3</sub>)<sub>0.005</sub>O<sub>3</sub> exhibited the highest <i>Qf</i> value of 212,000 GHz owing to the high average covalency obtained from the Rietveld refinement of X-ray Diffraction patterns, high binding energy, and small full width at half maximum of Ti 2<i>p</i> peaks, as confirmed by X-ray Photoelectron Spectroscopy of MgTiO<sub>3</sub> –based ceramics. The temperature coefficients of the resonant frequency (<i>TCF</i>) of MgTiO<sub>3</sub>-based ceramics were dependent on the degree of average oxygen octahedral distortion of the ilmenite structure. The dielectric constant (<i>K</i>) was affected by the theoretical dielectric polarizability of the constituent ions of sintered specimens. Excellent microwave dielectric properties were obtained for MgTi<sub>0.995</sub>(Mn<sub>1/3</sub>Nb<sub>2/3</sub>)<sub>0.005</sub>O<sub>3</sub>; <i>K</i> = 18.05, <i>Qf</i> = 212,000 GHz, TCF =  − 37.04 ppm/°C. The microwave dielectric properties were improved by substituting (Mn<sub>1/3</sub>Nb<sub>2/3</sub>)<sup>4+</sup> for Ti<sup>4+</sup> in MgTiO<sub>3</sub>-based ceramics.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 1","pages":"56 - 64"},"PeriodicalIF":2.1,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44908522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Soluble ‘Ba(Ni-ett)’ (ett = 1,1,2,2-Ethenetetrathiolate) Derived Thermoelectric Material 可溶性‘Ba(Ni ett)’(ett = 1,1,2,2-四硫代乙烯酯)衍生的热电材料
IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-09-01 DOI: 10.1007/s13391-023-00454-z
Yaoyang Hu, Geoffrey Rivers, Michael P. Weir, David B. Amabilino, Christopher J. Tuck, Ricky D. Wildman, Oleg Makarovsky, Simon Woodward

We describe the synthesis and characterisation of the first of a new class of soluble ladder oligomeric thermoelectric material based on previously unutilised ethene-1,1,2,2-tetrasulfonic acid. Reaction of Ba(OH)2 and propionic acid at a 1:1 stoichiometry leads to the formation of the previously unrecognised soluble [Ba(OH)(O2CEt)]⋅H2O. The latter when used to hydrolyse 1,3,4,6-tetrathiapentalene-2,5-dione (TPD), in the presence of NiCl2, forms a new material whose elemental composition is in accord with the formula [(EtCO2Ba)4Ni8{(O3S)2C = C(SO3)2}5]⋅22H2O (4). Compound 4 can be pressed into pellets, drop-cast as DMSO solutions or ink-jet printed (down to sub-mm resolutions). While its room temperature thermoelectric properties are modest (σmax 0.04 S cm−1 and Seebeck coefficient, αmax − 25.8 μV K−1) we introduce a versatile new oligomeric material that opens new possible synthetic routes for n-type thermoelectrics.

Graphical Abstract

我们描述了基于以前未利用的乙烯-1,1,2,2-四磺酸的第一种新型可溶性梯形低聚热电材料的合成和特性。Ba(OH)2和丙酸以1:1的比例发生反应,形成了以前未曾认识到的可溶性[Ba(OH)(O2CEt)]⋅H2O。后者在 NiCl2 的存在下用于水解 1,3,4,6-四硫杂戊烯-2,5-二酮(TPD)时,会形成一种新材料,其元素组成符合[(EtCO2Ba)4Ni8{(O3S)2C = C(SO3)2}5]⋅22H2O(4)式。化合物 4 可压制成颗粒、滴铸成 DMSO 溶液或喷墨打印(分辨率可达亚毫米)。虽然它的室温热电性能不高(σmax 0.04 S cm-1 和塞贝克系数 αmax - 25.8 μV K-1),但我们介绍了一种多功能的新型低聚物材料,它为 n 型热电材料开辟了新的合成途径。
{"title":"A Soluble ‘Ba(Ni-ett)’ (ett = 1,1,2,2-Ethenetetrathiolate) Derived Thermoelectric Material","authors":"Yaoyang Hu,&nbsp;Geoffrey Rivers,&nbsp;Michael P. Weir,&nbsp;David B. Amabilino,&nbsp;Christopher J. Tuck,&nbsp;Ricky D. Wildman,&nbsp;Oleg Makarovsky,&nbsp;Simon Woodward","doi":"10.1007/s13391-023-00454-z","DOIUrl":"10.1007/s13391-023-00454-z","url":null,"abstract":"<div><p>We describe the synthesis and characterisation of the first of a new class of soluble ladder oligomeric thermoelectric material based on previously unutilised ethene-1,1,2,2-tetrasulfonic acid. Reaction of Ba(OH)<sub>2</sub> and propionic acid at a 1:1 stoichiometry leads to the formation of the previously unrecognised soluble [Ba(OH)(O<sub>2</sub>CEt)]⋅H<sub>2</sub>O. The latter when used to hydrolyse 1,3,4,6-tetrathiapentalene-2,5-dione (TPD), in the presence of NiCl<sub>2</sub>, forms a new material whose elemental composition is in accord with the formula [(EtCO<sub>2</sub>Ba)<sub>4</sub>Ni<sub>8</sub>{(O<sub>3</sub>S)<sub>2</sub>C = C(SO<sub>3</sub>)<sub>2</sub>}<sub>5</sub>]⋅22H<sub>2</sub>O (<b>4</b>). Compound <b>4</b> can be pressed into pellets, drop-cast as DMSO solutions or ink-jet printed (down to sub-mm resolutions). While its room temperature thermoelectric properties are modest (σ<sub>max</sub> 0.04 S cm<sup>−1</sup> and Seebeck coefficient, α<sub>max</sub> − 25.8 μV K<sup>−1</sup>) we introduce a versatile new oligomeric material that opens new possible synthetic routes for n-type thermoelectrics.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 2","pages":"150 - 157"},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13391-023-00454-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48695533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Surface Oxidation on the Magnetic Properties of Fe-Based Amorphous Metal Powder Made by Atomization Methods 表面氧化对雾化法制备铁基非晶金属粉末磁性能的影响
IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-08-28 DOI: 10.1007/s13391-023-00455-y
Tae-Kyung Lee, Seung-Wook Kim, Dae-Yong Jeong

The demand for soft magnetic amorphous metal powders with high saturation magnetization values and low energy loss has increased to achieve high-performance inductors for mobile electronic devices. In this study, Fe-based Fe92.3Si3.5B3.0C0.7P0.5 (wt.%) amorphous metal powders were prepared using different atomization methods for controlling the surface oxidation of the metal alloy powder. Conventional high-pressure water atomization and the newly developed high-speed water screen atomization methods were used for preparation. Regardless of the preparation methods, both alloy powders were amorphous, and their magnetic flux density (Bs) values were more than 165 emu/g. Compared to the powders from the conventional high-pressure water atomization method, the amorphous metal powder manufactured using the high-speed water screen atomization process had lower eddy current loss because of the formation of a thin and uniform oxide layer. Furthermore, the magnetic properties of the consolidated magnetic cores fabricated with the amorphous powders produced by the high-speed water screen atomization method using compact-pressing techniques were characterized. Magnetic powders with fewer surface oxidation layers exhibited increased initial permeability and a smaller coercive field, leading to a lower core loss value. The magnetic core made from Fe92.3Si3.5B3.0C0.7P0.5 (wt.%) amorphous powder with an oxide content of 0.12 (wt.%) using the high-speed water screen atomization method exhibited an initial permeability of 25 in the frequency range up to 5 MHz, and a loss of 237 mW/cm3 with Bm = (0.2,{text{T}}) at 1 MHz.

Graphical Abstract

为实现移动电子设备的高性能电感器,对具有高饱和磁化值和低能量损失的软磁非晶金属粉末的需求日益增加。本研究采用不同的雾化方法制备了Fe92.3Si3.5B3.0C0.7P0.5(重量百分比)非晶金属粉末,以控制金属合金粉末的表面氧化。制备方法包括传统的高压水雾化法和新开发的高速水筛雾化法。无论采用哪种制备方法,两种合金粉末都是无定形的,其磁通密度(Bs)值都大于 165 emu/g。与传统高压水雾化法制备的粉末相比,高速水筛网雾化法制备的非晶态金属粉末由于形成了薄而均匀的氧化层,因此涡流损耗较低。此外,还对使用高速水筛网雾化法生产的非晶粉末通过压制技术制造的固结磁芯的磁性能进行了表征。表面氧化层较少的磁粉显示出更高的初始磁导率和更小的矫顽力场,从而导致更低的磁芯损耗值。使用高速水筛分雾化法由氧化物含量为 0.12(重量百分比)的 Fe92.3Si3.5B3.0C0.7P0.5(重量百分比)无定形粉末制成的磁芯在高达 5 MHz 的频率范围内显示出 25 的初始磁导率,在 1 MHz 时 Bm = (0.2,{text/{T}}/)的损耗为 237 mW/cm3。
{"title":"Effects of Surface Oxidation on the Magnetic Properties of Fe-Based Amorphous Metal Powder Made by Atomization Methods","authors":"Tae-Kyung Lee,&nbsp;Seung-Wook Kim,&nbsp;Dae-Yong Jeong","doi":"10.1007/s13391-023-00455-y","DOIUrl":"10.1007/s13391-023-00455-y","url":null,"abstract":"<div><p>The demand for soft magnetic amorphous metal powders with high saturation magnetization values and low energy loss has increased to achieve high-performance inductors for mobile electronic devices. In this study, Fe-based Fe<sub>92.3</sub>Si<sub>3.5</sub>B<sub>3.0</sub>C<sub>0.7</sub>P<sub>0.5</sub> (wt.%) amorphous metal powders were prepared using different atomization methods for controlling the surface oxidation of the metal alloy powder. Conventional high-pressure water atomization and the newly developed high-speed water screen atomization methods were used for preparation. Regardless of the preparation methods, both alloy powders were amorphous, and their magnetic flux density (<i>B</i>s) values were more than 165 emu/g. Compared to the powders from the conventional high-pressure water atomization method, the amorphous metal powder manufactured using the high-speed water screen atomization process had lower eddy current loss because of the formation of a thin and uniform oxide layer. Furthermore, the magnetic properties of the consolidated magnetic cores fabricated with the amorphous powders produced by the high-speed water screen atomization method using compact-pressing techniques were characterized. Magnetic powders with fewer surface oxidation layers exhibited increased initial permeability and a smaller coercive field, leading to a lower core loss value. The magnetic core made from Fe<sub>92.3</sub>Si<sub>3.5</sub>B<sub>3.0</sub>C<sub>0.7</sub>P<sub>0.5</sub> (wt.%) amorphous powder with an oxide content of 0.12 (wt.%) using the high-speed water screen atomization method exhibited an initial permeability of 25 in the frequency range up to 5 MHz, and a loss of 237 mW/cm<sup>3</sup> with <i>B</i><sub>m</sub> = <span>(0.2,{text{T}})</span> at 1 MHz.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"261 - 268"},"PeriodicalIF":2.1,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42020855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conductive Paste Inks Prepared Using Ionic-Liquid-Stabilized Metal Nanoparticle Fluids and their Sintering Effect 离子液体稳定金属纳米粒子制备导电浆料及其烧结效果
IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-08-27 DOI: 10.1007/s13391-023-00451-2
Tae-Gyun Kwon, Younghoon Kim

Conductive paste inks have received considerable attention as facile conductive materials for the formation of electrode layers. However, conventional paste inks result in films with poor surface morphology. In addition, they require a high thermal annealing temperature for achieving high electrical conductivity because of their organic/inorganic composite structure, in which nanosized metal particles and polymeric organic binders are mixed in solvents. In this work, we prepare solvent-free and polymeric-binder-free metal nanoparticle (NP) fluids, which can be used as facile conductive pastes for forming an electrode layer after sintering at a considerably low temperature. We employ thiol-terminated imidazolium-type ionic liquid (IL-SH) molecules with a small molecular weight and fluidic behavior as the surface ligands of Ag NPs. IL-SH-stabilized Ag NPs exhibit fluidic behavior and metallic conducting properties at a considerably low sintering temperature of 250 °C.

Graphical Abstract

导电浆状油墨作为一种易于形成电极层的导电材料,受到了广泛关注。然而,传统浆状油墨形成的薄膜表面形态不佳。此外,由于其有机/无机复合结构,即纳米级金属颗粒和聚合物有机粘合剂在溶剂中混合,因此需要较高的热退火温度才能实现高导电性。在这项工作中,我们制备了不含溶剂和聚合物粘合剂的金属纳米粒子(NP)流体,这种流体可用作导电浆料,在相当低的温度下烧结后形成电极层。我们采用分子量小、流动性好的硫醇端咪唑离子液体(IL-SH)分子作为银纳米粒子的表面配体。IL-SH稳定的Ag NPs在250 °C的相当低的烧结温度下表现出流体行为和金属导电特性。
{"title":"Conductive Paste Inks Prepared Using Ionic-Liquid-Stabilized Metal Nanoparticle Fluids and their Sintering Effect","authors":"Tae-Gyun Kwon,&nbsp;Younghoon Kim","doi":"10.1007/s13391-023-00451-2","DOIUrl":"10.1007/s13391-023-00451-2","url":null,"abstract":"<div><p>Conductive paste inks have received considerable attention as facile conductive materials for the formation of electrode layers. However, conventional paste inks result in films with poor surface morphology. In addition, they require a high thermal annealing temperature for achieving high electrical conductivity because of their organic/inorganic composite structure, in which nanosized metal particles and polymeric organic binders are mixed in solvents. In this work, we prepare solvent-free and polymeric-binder-free metal nanoparticle (NP) fluids, which can be used as facile conductive pastes for forming an electrode layer after sintering at a considerably low temperature. We employ thiol-terminated imidazolium-type ionic liquid (IL-SH) molecules with a small molecular weight and fluidic behavior as the surface ligands of Ag NPs. IL-SH-stabilized Ag NPs exhibit fluidic behavior and metallic conducting properties at a considerably low sintering temperature of 250 °C.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"337 - 344"},"PeriodicalIF":2.1,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44583471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrodeposited Hierarchical Silver Network Transparent Conducting Electrodes with Excellent Optoelectronic Properties and Mechanical Flexibility 具有优异光电特性和机械柔性的电沉积分层银网络透明导电电极
IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-08-24 DOI: 10.1007/s13391-023-00453-0
Eunyeong Yang, Seoin Kang, Sanghyun Jeong, Kihyun Shin, Jung-Sub Wi, Joon Sik Park, Sangyeob Lee, Choong-Heui Chung

Mechanically flexible transparent conductive electrodes (TCEs) with high optoelectronic performance are essential for flexible or wearable optoelectronic devices, which are currently receiving a considerable amount of attention. In this study, we investigate the structural, electrical, optical and mechanical properties of electrodeposited hierarchical silver network TCEs consisting of two layers of silver nanowires (AgNWs) and a silver micromesh. Hierarchical structures are known to improve the optoelectronic properties of network-type TCEs. To fabricate an electrodeposited hierarchical network, a AgNW solution is first spun onto a substrate to form randomly distributed AgNWs, and a silver micromesh is then formed on the AgNWs. Subsequently, silver is electrodeposited onto the hierarchical network. As a result of the electrodeposition, AgNW-AgNW and AgNW-silver micromesh contacts are effectively welded, and the dimensions of the AgNWs and the silver micromesh are optimized to maximize the figure of merit of the TCE. Furthermore, the electrodeposited hierarchical silver network shows excellent mechanical flexibility and much less degradation of its sheet resistance than that experienced by ITO upon repeated convex and concave bending. Its resulting optoelectronic and mechanically flexible performance is superior to that of commercialized ITO.

Graphical Abstract

具有高光电性能的机械柔性透明导电电极(TCE)对于柔性或可穿戴光电设备至关重要,目前正受到广泛关注。在本研究中,我们研究了由两层银纳米线(AgNWs)和银微网组成的电沉积分层银网络 TCE 的结构、电气、光学和机械特性。众所周知,分层结构可改善网络型 TCE 的光电特性。为了制造电沉积分层网络,首先将银纳米线溶液纺到基底上,形成随机分布的银纳米线,然后在银纳米线上形成银微网。随后,银被电沉积到分层网络上。电沉积的结果是,AgNW-AgNW 和 AgNW-银微网接触得到有效焊接,AgNW 和银微网的尺寸得到优化,从而最大限度地提高了 TCE 的性能。此外,电沉积分层银网络具有出色的机械柔韧性,在反复凸凹弯曲时,其薄层电阻的衰减程度远低于 ITO。其光电和机械柔性性能均优于已商业化的 ITO。
{"title":"Electrodeposited Hierarchical Silver Network Transparent Conducting Electrodes with Excellent Optoelectronic Properties and Mechanical Flexibility","authors":"Eunyeong Yang,&nbsp;Seoin Kang,&nbsp;Sanghyun Jeong,&nbsp;Kihyun Shin,&nbsp;Jung-Sub Wi,&nbsp;Joon Sik Park,&nbsp;Sangyeob Lee,&nbsp;Choong-Heui Chung","doi":"10.1007/s13391-023-00453-0","DOIUrl":"10.1007/s13391-023-00453-0","url":null,"abstract":"<div><p>Mechanically flexible transparent conductive electrodes (TCEs) with high optoelectronic performance are essential for flexible or wearable optoelectronic devices, which are currently receiving a considerable amount of attention. In this study, we investigate the structural, electrical, optical and mechanical properties of electrodeposited hierarchical silver network TCEs consisting of two layers of silver nanowires (AgNWs) and a silver micromesh. Hierarchical structures are known to improve the optoelectronic properties of network-type TCEs. To fabricate an electrodeposited hierarchical network, a AgNW solution is first spun onto a substrate to form randomly distributed AgNWs, and a silver micromesh is then formed on the AgNWs. Subsequently, silver is electrodeposited onto the hierarchical network. As a result of the electrodeposition, AgNW-AgNW and AgNW-silver micromesh contacts are effectively welded, and the dimensions of the AgNWs and the silver micromesh are optimized to maximize the figure of merit of the TCE. Furthermore, the electrodeposited hierarchical silver network shows excellent mechanical flexibility and much less degradation of its sheet resistance than that experienced by ITO upon repeated convex and concave bending. Its resulting optoelectronic and mechanically flexible performance is superior to that of commercialized ITO.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"254 - 260"},"PeriodicalIF":2.1,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52846924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved Performance of Transparent MoS2 Thin-Film Transistor with IZO Electrodes by Air Thermal Annealing 空气热退火改善IZO电极透明MoS2薄膜晶体管的性能
IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-08-23 DOI: 10.1007/s13391-023-00450-3
Ju Won Kim, Jin Gi An, Guen Hyung Oh, Joo Hyung Park, TaeWan Kim

Molybdenum disulfide (MoS2) grown via metal-organic chemical vapor deposition is known to exhibit high transparency and superior quality. Transparent thin-film transistor (TFT) based on a multilayer MoS2 film and indium zinc oxide (IZO) using a representative transparent conducting oxide as source and drain electrodes indicate more than 70% transmittance in the visible wavelength. However, the device performance is limited by the large Schottky barrier height corresponding to the high work function of IZO (~ 5.1 eV) and surface impurities generated during the wet transfer process and subsequent oxidation. In this study, we addressed this problem by employing air thermal annealing to improve the TFT device performance. Consequently, contact resistance is reduced ~ 10 times, and the field-effect mobility and on/off ratio measured using ion-gel side gate, which are important parameters for TFT device operation, were enhanced by ~ 59 and ~ 81 times, respectively.

Graphical abstract

众所周知,通过金属有机化学气相沉积生长的二硫化钼(MoS2)具有高透明度和卓越的品质。基于多层 MoS2 薄膜和氧化铟锌(IZO)的透明薄膜晶体管(TFT)使用具有代表性的透明导电氧化物作为源极和漏极,在可见光波段的透过率超过 70%。然而,由于 IZO 的功函数较高(约 5.1 eV),因此肖特基势垒高度较大,而且在湿法转移过程和随后的氧化过程中会产生表面杂质,从而限制了器件的性能。在本研究中,我们采用空气热退火来改善 TFT 器件的性能,从而解决了这一问题。因此,接触电阻降低了 ~ 10 倍,使用离子凝胶侧栅测量的场效应迁移率和开/关比(TFT 器件运行的重要参数)分别提高了 ~ 59 倍和 ~ 81 倍。
{"title":"Improved Performance of Transparent MoS2 Thin-Film Transistor with IZO Electrodes by Air Thermal Annealing","authors":"Ju Won Kim,&nbsp;Jin Gi An,&nbsp;Guen Hyung Oh,&nbsp;Joo Hyung Park,&nbsp;TaeWan Kim","doi":"10.1007/s13391-023-00450-3","DOIUrl":"10.1007/s13391-023-00450-3","url":null,"abstract":"<div><p>Molybdenum disulfide (MoS<sub>2</sub>) grown via metal-organic chemical vapor deposition is known to exhibit high transparency and superior quality. Transparent thin-film transistor (TFT) based on a multilayer MoS<sub>2</sub> film and indium zinc oxide (IZO) using a representative transparent conducting oxide as source and drain electrodes indicate more than 70% transmittance in the visible wavelength. However, the device performance is limited by the large Schottky barrier height corresponding to the high work function of IZO (~ 5.1 eV) and surface impurities generated during the wet transfer process and subsequent oxidation. In this study, we addressed this problem by employing air thermal annealing to improve the TFT device performance. Consequently, contact resistance is reduced ~ 10 times, and the field-effect mobility and on/off ratio measured using ion-gel side gate, which are important parameters for TFT device operation, were enhanced by ~ 59 and ~ 81 times, respectively.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"225 - 231"},"PeriodicalIF":2.1,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47985145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manipulation of Hole and Exciton Distributions in Organic Light-Emitting Diodes with Dual Emission Layers 双发射层有机发光二极管中空穴和激子分布的操纵
IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-08-23 DOI: 10.1007/s13391-023-00452-1
Suk-Ho Song, Jae-In Yoo, Hyo-Bin Kim, Sung-Cheon Kang, Kanghoon Kim, Sung-Jae Park, Qun Yan, Jang-Kun Song

The efficiency improvement of organic light-emitting diodes (OLEDs) is important but challenging. Here, we introduce a unique OLED with a hole modulation layer (HML) in the middle of its emission layer (EML). The external quantum efficiency and power efficiency can be improved by approximately 58% when an HML with optimized thickness is inserted. HML insertion can efficiently retard hole flow, thus improving (i) exciton distribution uniformity and (ii) local electron–hole charge balance. A systematic study of the individual contributions of two EMLs separated by the HML shows that the former factor dominantly works at low current densities (< 10 mA/cm2), whereas the latter factor functions over the entire current density range of the OLED. Therefore, the efficiency improvement is greatest at low current densities, which aligns with the typical operating range in display applications. The results provide a deeper understanding of the OLED emission mechanism, and the proposed OLED structure can significantly benefit high-performance OLED displays.

Graphical Abstract

提高有机发光二极管(OLED)的效率非常重要,但也极具挑战性。在这里,我们引入了一种独特的有机发光二极管,在其发射层(EML)中间有一个空穴调制层(HML)。当插入具有优化厚度的 HML 时,外部量子效率和功率效率可提高约 58%。插入 HML 可以有效地延缓空穴流,从而改善(i)激子分布均匀性和(ii)局部电子-空穴电荷平衡。对被 HML 分隔开来的两个 EML 的各自贡献进行的系统研究表明,前一个因素主要在低电流密度(10 mA/cm2)时起作用,而后一个因素则在 OLED 的整个电流密度范围内起作用。因此,在低电流密度时效率提高最大,这与显示应用中的典型工作范围一致。这些结果加深了人们对 OLED 发射机制的理解,而所提出的 OLED 结构可显著提高高性能 OLED 显示屏的性能。
{"title":"Manipulation of Hole and Exciton Distributions in Organic Light-Emitting Diodes with Dual Emission Layers","authors":"Suk-Ho Song,&nbsp;Jae-In Yoo,&nbsp;Hyo-Bin Kim,&nbsp;Sung-Cheon Kang,&nbsp;Kanghoon Kim,&nbsp;Sung-Jae Park,&nbsp;Qun Yan,&nbsp;Jang-Kun Song","doi":"10.1007/s13391-023-00452-1","DOIUrl":"10.1007/s13391-023-00452-1","url":null,"abstract":"<div><p>The efficiency improvement of organic light-emitting diodes (OLEDs) is important but challenging. Here, we introduce a unique OLED with a hole modulation layer (HML) in the middle of its emission layer (EML). The external quantum efficiency and power efficiency can be improved by approximately 58% when an HML with optimized thickness is inserted. HML insertion can efficiently retard hole flow, thus improving (<i>i</i>) exciton distribution uniformity and (<i>ii</i>) local electron–hole charge balance. A systematic study of the individual contributions of two EMLs separated by the HML shows that the former factor dominantly works at low current densities (&lt; 10 mA/cm<sup>2</sup>), whereas the latter factor functions over the entire current density range of the OLED. Therefore, the efficiency improvement is greatest at low current densities, which aligns with the typical operating range in display applications. The results provide a deeper understanding of the OLED emission mechanism, and the proposed OLED structure can significantly benefit high-performance OLED displays.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"232 - 242"},"PeriodicalIF":2.1,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46451038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of Microcracks in Epitaxial CeO2 Thin Films on YSZ-Buffered Si YSZ缓冲硅外延CeO2薄膜中微裂纹的演化
IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-07-25 DOI: 10.1007/s13391-023-00449-w
Soo Young Jung, Hyung-Jin Choi, Jun Young Lee, Min-Seok Kim, Ruiguang Ning, Dong-Hun Han, Seong Keun Kim, Sung Ok Won, June Hyuk Lee, Ji-Soo Jang, Ho Won Jang, Seung-Hyub Baek

Epitaxial buffer layers such as ceria (CeO2)/yttria-stabilized zirconia (YSZ) allow the direct integration of functional oxide single crystal thin films on silicon (Si). Microcracks in the buffer layer, often evolving from the large thermal tensile stress, are detrimental to the integration of high-quality complex oxide thin films on Si. In this study, we investigated the evolution of microcracks in sputter-grown epitaxial CeO2 layers by systematically varying the sputtering power and thickness of CeO2 thin films on YSZ single crystal (low thermal mismatch) and YSZ-buffered Si (high thermal mismatch) substrates. Using a plane stress model, we revealed that as the sputtering power increased, the epitaxial CeO2 thin films tended to be more compressively strained at the growth temperature. This could accommodate the tensile strain arising during cooling to room temperature, thereby suppressing the evolution of microcracks. Our result provides not only a method to suppress microcracks in the oxide heterostructure on Si, but also a tool to control their strain state, by controlling their growth parameters.

Graphical Abstract

铈(CeO2)/钇稳定氧化锆(YSZ)等外延缓冲层可以在硅(Si)上直接集成功能氧化物单晶薄膜。缓冲层中的微裂缝通常是由较大的热拉伸应力演变而来,不利于在硅上集成高质量的复合氧化物薄膜。在这项研究中,我们通过系统地改变 YSZ 单晶(低热失配)和 YSZ 缓冲硅(高热失配)基底上 CeO2 薄膜的溅射功率和厚度,研究了溅射生长的外延 CeO2 层中微裂纹的演变。利用平面应力模型,我们发现随着溅射功率的增加,外延 CeO2 薄膜在生长温度下的压缩应变趋于增大。这可以适应冷却到室温时产生的拉伸应变,从而抑制微裂纹的演变。我们的研究结果不仅提供了一种抑制硅基氧化物异质结构中微裂纹的方法,还提供了一种通过控制其生长参数来控制其应变状态的工具。
{"title":"Evolution of Microcracks in Epitaxial CeO2 Thin Films on YSZ-Buffered Si","authors":"Soo Young Jung,&nbsp;Hyung-Jin Choi,&nbsp;Jun Young Lee,&nbsp;Min-Seok Kim,&nbsp;Ruiguang Ning,&nbsp;Dong-Hun Han,&nbsp;Seong Keun Kim,&nbsp;Sung Ok Won,&nbsp;June Hyuk Lee,&nbsp;Ji-Soo Jang,&nbsp;Ho Won Jang,&nbsp;Seung-Hyub Baek","doi":"10.1007/s13391-023-00449-w","DOIUrl":"10.1007/s13391-023-00449-w","url":null,"abstract":"<div><p>Epitaxial buffer layers such as ceria (CeO<sub>2</sub>)/yttria-stabilized zirconia (YSZ) allow the direct integration of functional oxide single crystal thin films on silicon (Si). Microcracks in the buffer layer, often evolving from the large thermal tensile stress, are detrimental to the integration of high-quality complex oxide thin films on Si. In this study, we investigated the evolution of microcracks in sputter-grown epitaxial CeO<sub>2</sub> layers by systematically varying the sputtering power and thickness of CeO<sub>2</sub> thin films on YSZ single crystal (low thermal mismatch) and YSZ-buffered Si (high thermal mismatch) substrates. Using a plane stress model, we revealed that as the sputtering power increased, the epitaxial CeO<sub>2</sub> thin films tended to be more compressively strained at the growth temperature. This could accommodate the tensile strain arising during cooling to room temperature, thereby suppressing the evolution of microcracks. Our result provides not only a method to suppress microcracks in the oxide heterostructure on Si, but also a tool to control their strain state, by controlling their growth parameters.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"484 - 490"},"PeriodicalIF":2.1,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47955455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Dense, Pinholes-free Pure Cubic Phase CsPbBr3 Nanocrystals Film for High-performance Photodetector 用于高性能光电探测器的致密无针孔纯立方相CsPbBr3纳米晶体薄膜
IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-06-30 DOI: 10.1007/s13391-023-00448-x
Thanh-Tung Duong, Phuong-Nam Tran, Tuan-Pham Van, Duy-Hung Nguyen, Van-Dang Tran

This study demonstrates a simple centrifugal coating method to prepare high-quality pure cubic phase CsPbBr3 nanocrystal film. The resultant perovskite layers possess a uniform and dense 500 nm-thick, with a bandgap of 2.38 eV, a low trap-state density of 6.9 × 10− 15 cm− 3, and carrier mobility of approximately 19.8 cm2V− 1s− 1. Furthermore, CsPbBr3 NCs-based self-powered photodetectors with high charge carriers’ charge transfer are fabricated. The device shows a low dark current density of 1.93 × 10− 7 A/cm2 at room temperature. Such photodetectors show the highest responsivity of 3.0 AW− 1, specific detectivity of 1.2 × 1013 Jones, and external quantum efficiency (EQE) of 920% at zero bias voltage. The proposed method shows significant promise for use in the lab fabrication of optoelectronic devices based on thin films of nanocrystal perovskite materials.

本研究展示了一种制备高质量纯立方相 CsPbBr3 纳米晶薄膜的简单离心镀膜方法。所制备的包晶层厚度为 500 nm,均匀致密,带隙为 2.38 eV,阱态密度低至 6.9 × 10- 15 cm- 3,载流子迁移率约为 19.8 cm2V- 1s-1。此外,还制作出了基于 CsPbBr3 NCs 的自供电光电探测器,该探测器具有较高的载流子电荷转移能力。该器件在室温下的暗电流密度低至 1.93 × 10- 7 A/cm2。这种光电探测器的最高响应率为 3.0 AW-1,比检测率为 1.2 × 1013 Jones,零偏置电压下的外部量子效率(EQE)为 920%。所提出的方法为实验室制造基于纳米晶体包晶材料薄膜的光电器件带来了巨大的前景。
{"title":"A Dense, Pinholes-free Pure Cubic Phase CsPbBr3 Nanocrystals Film for High-performance Photodetector","authors":"Thanh-Tung Duong,&nbsp;Phuong-Nam Tran,&nbsp;Tuan-Pham Van,&nbsp;Duy-Hung Nguyen,&nbsp;Van-Dang Tran","doi":"10.1007/s13391-023-00448-x","DOIUrl":"10.1007/s13391-023-00448-x","url":null,"abstract":"<p>This study demonstrates a simple centrifugal coating method to prepare high-quality pure cubic phase CsPbBr<sub>3</sub> nanocrystal film. The resultant perovskite layers possess a uniform and dense 500 nm-thick, with a bandgap of 2.38 eV, a low trap-state density of 6.9 × 10<sup>− 15</sup> cm<sup>− 3</sup>, and carrier mobility of approximately 19.8 cm<sup>2</sup>V<sup>− 1</sup>s<sup>− 1</sup>. Furthermore, CsPbBr<sub>3</sub> NCs-based self-powered photodetectors with high charge carriers’ charge transfer are fabricated. The device shows a low dark current density of 1.93 × 10<sup>− 7</sup> A/cm<sup>2</sup> at room temperature. Such photodetectors show the highest responsivity of 3.0 AW<sup>− 1</sup>, specific detectivity of 1.2 × 10<sup>13</sup> Jones, and external quantum efficiency (EQE) of 920% at zero bias voltage. The proposed method shows significant promise for use in the lab fabrication of optoelectronic devices based on thin films of nanocrystal perovskite materials.</p>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 2","pages":"217 - 223"},"PeriodicalIF":2.1,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42909745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of Optical Modulation in Amorphous WO3 Thin Films 非晶WO3薄膜光调制的优化
IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-06-29 DOI: 10.1007/s13391-023-00447-y
Jiangbin Su, Xiumei Zhu, Longlong Chen, Yu Liu, Hao Qi, Zuming He, Bin Tang

WO3 thin films were prepared on indium-tin oxide (ITO) glass substrates at different substrate temperature by radio frequency magnetron sputtering. Then the films were soaked in five organic solvents of acetone, ethanol, cyclohexane, acetonitrile and ethyl acetate for 48 h, respectively. The changes in the microstructure, surface morphology and electrochromic (EC) properties of WO3 thin films before and after the immersion treatment were systematically studied. It was found that after soaking in ethanol, the optical modulation of amorphous WO3 thin films deposited at room temperature increased from 50 to 85%, showing excellent EC performance. Moreover, the immersion treatment in ethanol is also helpful for improving the EC properties of amorphous WO3 thin films prepared at elevated substrate temperature. However, after immersion in the other organic solvents, the optical modulation of WO3 thin films increased less (for acetone: 77%) or even decreased significantly (for cyclohexane, acetonitrile and ethyl acetate: 31%, 30% and 35%, respectively). In addition, the immersion treatment in ethanol cannot improve the optical modulation of crystalline WO3 thin films prepared at 600 °C, which dropped from 58 to 40%. The authors believe that this is mainly related to the different dredging effects of various organic solvents on the transport channels of Li-ions and electrons in WO3 thin films. Therefore, this work provides a new approach for the optimization of EC performance of amorphous WO3 thin films.

通过射频磁控溅射法在不同基底温度的氧化铟锡(ITO)玻璃基底上制备了 WO3 薄膜。然后将薄膜分别在丙酮、乙醇、环己烷、乙腈和乙酸乙酯五种有机溶剂中浸泡 48 小时。系统研究了浸泡处理前后 WO3 薄膜的微观结构、表面形貌和电致变色(EC)性能的变化。结果发现,在乙醇中浸泡后,室温下沉积的非晶态 WO3 薄膜的光学调制率从 50% 提高到 85%,显示出优异的电致变色性能。此外,在乙醇中浸泡处理也有助于改善在基底温度升高条件下制备的非晶态 WO3 薄膜的导电率性能。然而,在其他有机溶剂中浸泡后,WO3 薄膜的光学调制增加较少(丙酮:77%),甚至显著下降(环己烷、乙腈和乙酸乙酯:31%、30% 和 35%):分别为 31%、30% 和 35%)。此外,在乙醇中浸泡处理也无法改善在 600 °C 下制备的晶体 WO3 薄膜的光学调制,其光学调制从 58% 下降到 40%。作者认为,这主要与各种有机溶剂对 WO3 薄膜中锂离子和电子的传输通道的疏浚作用不同有关。因此,这项工作为优化非晶 WO3 薄膜的导电率性能提供了一种新方法。
{"title":"Optimization of Optical Modulation in Amorphous WO3 Thin Films","authors":"Jiangbin Su,&nbsp;Xiumei Zhu,&nbsp;Longlong Chen,&nbsp;Yu Liu,&nbsp;Hao Qi,&nbsp;Zuming He,&nbsp;Bin Tang","doi":"10.1007/s13391-023-00447-y","DOIUrl":"10.1007/s13391-023-00447-y","url":null,"abstract":"<p>WO<sub>3</sub> thin films were prepared on indium-tin oxide (ITO) glass substrates at different substrate temperature by radio frequency magnetron sputtering. Then the films were soaked in five organic solvents of acetone, ethanol, cyclohexane, acetonitrile and ethyl acetate for 48 h, respectively. The changes in the microstructure, surface morphology and electrochromic (EC) properties of WO<sub>3</sub> thin films before and after the immersion treatment were systematically studied. It was found that after soaking in ethanol, the optical modulation of amorphous WO<sub>3</sub> thin films deposited at room temperature increased from 50 to 85%, showing excellent EC performance. Moreover, the immersion treatment in ethanol is also helpful for improving the EC properties of amorphous WO<sub>3</sub> thin films prepared at elevated substrate temperature. However, after immersion in the other organic solvents, the optical modulation of WO<sub>3</sub> thin films increased less (for acetone: 77%) or even decreased significantly (for cyclohexane, acetonitrile and ethyl acetate: 31%, 30% and 35%, respectively). In addition, the immersion treatment in ethanol cannot improve the optical modulation of crystalline WO<sub>3</sub> thin films prepared at 600 °C, which dropped from 58 to 40%. The authors believe that this is mainly related to the different dredging effects of various organic solvents on the transport channels of Li-ions and electrons in WO<sub>3</sub> thin films. Therefore, this work provides a new approach for the optimization of EC performance of amorphous WO<sub>3</sub> thin films.</p>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 2","pages":"131 - 139"},"PeriodicalIF":2.1,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47548237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Electronic Materials Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1