Renelle Dubosq, Alfredo Camacho, Anna Rogowitz, Siyuan Zhang, Baptiste Gault
{"title":"Influence of high-strain deformation on major element mobility in garnet: Nanoscale evidence from atom probe tomography","authors":"Renelle Dubosq, Alfredo Camacho, Anna Rogowitz, Siyuan Zhang, Baptiste Gault","doi":"10.1111/jmg.12758","DOIUrl":null,"url":null,"abstract":"<p>Garnet is a common rock-forming mineral that occurs in a variety of rock types and over a wide range of pressure (P)–temperature (T) conditions in the Earth's lithosphere. Because garnet is considered a high-strength mineral stable across an extensive range of conditions (1–25 GPa, <300–2000°C), it is generally accepted that garnets can retain their microstructures and chemical composition during deformation and metamorphism. Therefore, garnet is commonly used as a geothermobarometer and geochronometer to provide P–T and timing constraints on tectonic events. Herein, we study garnet from an eclogite facies mylonite (central Australia) to investigate the mechanisms of element mobility during high-strain deformation under relatively dry, lower crustal conditions. Electron backscatter diffraction (EBSD) and electron channelling contrast imaging (ECCI) reveal evidence of crystal plasticity associated with brittle deformation in the form of heterogeneous misorientation patterns and low-angle grain boundaries developed over length scales of 20–50 μm in the rims of garnet porphyroclasts. Atom probe tomography (APT) analysis of a low-angle grain boundary within a highly strained portion of a clast shows Ca enrichment and Mg depletion along dislocations, whereas APT data along the rim of a mostly undeformed clast reveal a homogeneous distribution of garnet major components in the specimen matrix with the exception of Ca, Fe and Mg enrichment within a healed microfracture. The above-mentioned results suggest that under relatively dry conditions, crystal plasticity enhances bulk element mobility via pipe diffusion, highlighting the importance of deformation-induced microstructures on element mobility, with important implications for the robust and reliable use of garnet as a petrological tool.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":"42 3","pages":"355-372"},"PeriodicalIF":3.5000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmg.12758","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metamorphic Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12758","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Garnet is a common rock-forming mineral that occurs in a variety of rock types and over a wide range of pressure (P)–temperature (T) conditions in the Earth's lithosphere. Because garnet is considered a high-strength mineral stable across an extensive range of conditions (1–25 GPa, <300–2000°C), it is generally accepted that garnets can retain their microstructures and chemical composition during deformation and metamorphism. Therefore, garnet is commonly used as a geothermobarometer and geochronometer to provide P–T and timing constraints on tectonic events. Herein, we study garnet from an eclogite facies mylonite (central Australia) to investigate the mechanisms of element mobility during high-strain deformation under relatively dry, lower crustal conditions. Electron backscatter diffraction (EBSD) and electron channelling contrast imaging (ECCI) reveal evidence of crystal plasticity associated with brittle deformation in the form of heterogeneous misorientation patterns and low-angle grain boundaries developed over length scales of 20–50 μm in the rims of garnet porphyroclasts. Atom probe tomography (APT) analysis of a low-angle grain boundary within a highly strained portion of a clast shows Ca enrichment and Mg depletion along dislocations, whereas APT data along the rim of a mostly undeformed clast reveal a homogeneous distribution of garnet major components in the specimen matrix with the exception of Ca, Fe and Mg enrichment within a healed microfracture. The above-mentioned results suggest that under relatively dry conditions, crystal plasticity enhances bulk element mobility via pipe diffusion, highlighting the importance of deformation-induced microstructures on element mobility, with important implications for the robust and reliable use of garnet as a petrological tool.
期刊介绍:
The journal, which is published nine times a year, encompasses the entire range of metamorphic studies, from the scale of the individual crystal to that of lithospheric plates, including regional studies of metamorphic terranes, modelling of metamorphic processes, microstructural and deformation studies in relation to metamorphism, geochronology and geochemistry in metamorphic systems, the experimental study of metamorphic reactions, properties of metamorphic minerals and rocks and the economic aspects of metamorphic terranes.